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imitation

Imitation provides clean implementations of imitation and reward learning algorithms, under a unified and user-
friendly API. Currently, we have implementations of Behavioral Cloning, DAgger (with synthetic examples), density-
based reward modeling, Maximum Causal Entropy Inverse Reinforcement Learning, Adversarial Inverse Reinforce-
ment Learning, Generative Adversarial Imitation Learning, and Deep RL from Human Preferences.

You can find us on GitHub at http://github.com/HumanCompatibleAI/imitation.
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ONE

MAIN FEATURES

• Built on and compatible with Stable Baselines 3 (SB3).

• Modular Pytorch implementations of Behavioral Cloning, DAgger, GAIL, and AIRL that can train arbitrary SB3
policies.

• GAIL and AIRL have customizable reward and discriminator networks.

• Scripts to train policies using SB3 and save rollouts from these policies as synthetic “expert” demonstrations.

• Data structures and scripts for loading and storing expert demonstrations.
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TWO

CITING IMITATION

If you use imitation in your research project, please cite our paper to help us track our impact and enable readers to
more easily replicate your results. You may use the following BibTeX:

@misc{gleave2022imitation,
author = {Gleave, Adam and Taufeeque, Mohammad and Rocamonde, Juan and Jenner, Erik␣

→˓and Wang, Steven H. and Toyer, Sam and Ernestus, Maximilian and Belrose, Nora and␣
→˓Emmons, Scott and Russell, Stuart},
title = {imitation: Clean Imitation Learning Implementations},
year = {2022},
howPublished = {arXiv:2211.11972v1 [cs.LG]},
archivePrefix = {arXiv},
eprint = {2211.11972},
primaryClass = {cs.LG},
url = {https://arxiv.org/abs/2211.11972},

}

2.1 What is imitation?

imitation is an open-source library providing high-quality, reliable and modular implementations of seven reward
and imitation learning algorithms, built on modern backends like PyTorch and Stable Baselines3. It includes implemen-
tations of Behavioral Cloning (BC), DAgger, Generative Adversarial Imitation Learning (GAIL), Adversarial Inverse
Reinforcement Learning (AIRL), Reward Learning through Preference Comparisons, Maximum Causal Entropy In-
verse Reinforcement Learning (MCE IRL), and Density-based reward modeling. The algorithms follow a consistent
interface, making it simple to train and compare a range of algorithms.

A key use case of imitation is as an experimental baseline. Small implementation details in imitation learning algo-
rithms can have significant impacts on performance, which can lead to spurious positive results if a weak experimental
baseline is used. To address this challenge, imitation’s algorithms have been carefully benchmarked and compared
to prior implementations. The codebase is statically type-checked and over 90% of it is covered by automated tests.

In addition to providing reliable baselines, imitation aims to simplify the process of developing novel reward and
imitation learning algorithms. Its implementations are modular: users can freely change the reward or policy network
architecture, RL algorithm and optimizer without touching the codebase itself. Algorithms can be extended by sub-
classing and overriding relevant methods. imitation also provides utility methods to handle common tasks to support
the development of entirely novel algorithms.

Our goal for imitation is to make it easier to use, develop, and compare imitation and reward learning algorithms.
The library is in active development, and we welcome contributions and feedback.

Check out our recommended First Steps for an overview of how to use the library. We also have tutorials, such as
Train an Agent using Behavior Cloning, that provide detailed examples of specific algorithms. If you are interested in
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helping develop imitation then we suggest you refer to the Developer Guide as well as more specific guidelines for
Contributing.

2.2 Installation

2.2.1 Prerequisites

• Python 3.8+

• (Optional) OpenGL (to render gym environments)

• (Optional) FFmpeg (to encode videos of renders)

• (Optional) MuJoCo (follow instructions to install mujoco_py v1.5 here)

2.2.2 Installation from PyPI

To install the latest PyPI release, simply run:

pip install imitation

2.2.3 Installation from source

Installation from source is useful if you wish to contribute to the development of imitation, or if you need features
that have not yet been made available in a stable release:

git clone http://github.com/HumanCompatibleAI/imitation
cd imitation
pip install -e .

There are also a number of dependencies used for running tests and building the documentation, which can be installed
with:

pip install -e ".[dev]"

2.3 First Steps

Imitation can be used in two main ways: through its command-line interface (CLI) or Python API. The CLI allows
you to quickly train and test algorithms and policies directly from the command line. The Python API provides greater
flexibility and extensibility, and allows you to inter-operate with your existing Python environment.

6 Chapter 2. Citing imitation
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2.3.1 CLI Quickstart

We provide several CLI scripts as front-ends to the algorithms implemented in imitation. These use Sacred for
configuration and replicability.

For information on how to configure Sacred CLI options, see the Sacred docs.

#!/usr/bin/env bash

# Train PPO agent on pendulum and collect expert demonstrations. Tensorboard logs saved␣
→˓in quickstart/rl/
python -m imitation.scripts.train_rl with pendulum environment.fast policy_evaluation.
→˓fast rl.fast fast logging.log_dir=quickstart/rl/

# Train GAIL from demonstrations. Tensorboard logs saved in output/ (default log␣
→˓directory).
python -m imitation.scripts.train_adversarial gail with pendulum environment.fast␣
→˓demonstrations.fast policy_evaluation.fast rl.fast fast demonstrations.path=quickstart/
→˓rl/rollouts/final.npz demonstrations.source=local

# Train AIRL from demonstrations. Tensorboard logs saved in output/ (default log␣
→˓directory).
python -m imitation.scripts.train_adversarial airl with pendulum environment.fast␣
→˓demonstrations.fast policy_evaluation.fast rl.fast fast demonstrations.path=quickstart/
→˓rl/rollouts/final.npz demonstrations.source=local

Note: Remove the fast options from the commands above to allow training run to completion.

Tip: python -m imitation.scripts.train_rl print_config will list Sacred script options. These configu-
ration options are also documented in each script’s docstrings.

2.3.2 Python Interface Quickstart

Here’s an example script that loads CartPole demonstrations and trains BC, GAIL, and AIRL models on that data. You
will need to pip install seals or pip install imitation[test] to run this.

"""This is a simple example demonstrating how to clone the behavior of an expert.

Refer to the jupyter notebooks for more detailed examples of how to use the algorithms.
"""

import gym
import numpy as np
from stable_baselines3 import PPO
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.vec_env import DummyVecEnv
from stable_baselines3.ppo import MlpPolicy

from imitation.algorithms import bc
from imitation.data import rollout

(continues on next page)
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(continued from previous page)

from imitation.data.wrappers import RolloutInfoWrapper

env = gym.make("CartPole-v1")
rng = np.random.default_rng(0)

def train_expert():
print("Training a expert.")
expert = PPO(

policy=MlpPolicy,
env=env,
seed=0,
batch_size=64,
ent_coef=0.0,
learning_rate=0.0003,
n_epochs=10,
n_steps=64,

)
expert.learn(100) # Note: change this to 100000 to train a decent expert.
return expert

def sample_expert_transitions():
expert = train_expert()

print("Sampling expert transitions.")
rollouts = rollout.rollout(

expert,
DummyVecEnv([lambda: RolloutInfoWrapper(env)]),
rollout.make_sample_until(min_timesteps=None, min_episodes=50),
rng=rng,

)
return rollout.flatten_trajectories(rollouts)

transitions = sample_expert_transitions()
bc_trainer = bc.BC(

observation_space=env.observation_space,
action_space=env.action_space,
demonstrations=transitions,
rng=rng,

)

reward, _ = evaluate_policy(
bc_trainer.policy, # type: ignore[arg-type]
env,
n_eval_episodes=3,
render=True,

)
print(f"Reward before training: {reward}")

print("Training a policy using Behavior Cloning")

(continues on next page)
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(continued from previous page)

bc_trainer.train(n_epochs=1)

reward, _ = evaluate_policy(
bc_trainer.policy, # type: ignore[arg-type]
env,
n_eval_episodes=3,
render=True,

)
print(f"Reward after training: {reward}")

2.4 Command Line Interface

Many features of the core library are accessible via the command line interface built using the Sacred package.

Sacred is used to configure and run the algorithms. It is centered around the concept of experiments which are com-
posed of reusable ingredients. Each experiment and each ingredient has its own configuration namespace. Named
configurations are used to specify a coherent set of configuration values. It is recommended to at least read the Sacred
documentation about the command line interface.

The scripts package contains a number of sacred experiments to either execute algorithms or perform utility tasks.
The most important ingredients for imitation learning are:

• Environments

• Expert Policies

• Expert Demonstrations

• Reward Functions

2.4.1 Usage Examples

Here we demonstrate some usage examples for the command line interface. You can always find out all the configurable
values by running:

python -m imitation.scripts.<script> print_config

Run BC on the CartPole-v1 environment with a pre-trained PPO policy as expert:

Note: Here the cartpole environment is specified via a named configuration.

python -m imitation.scripts.train_imitation bc with \
cartpole \
demonstrations.n_expert_demos=50 \
bc.train_kwargs.n_batches=2000 \
expert.policy_type=ppo \
expert.loader_kwargs.path=tests/testdata/expert_models/cartpole_0/policies/final/

→˓model.zip

2.4. Command Line Interface 9
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50 expert demonstrations are sampled from the PPO policy that is included in the testdata folder. 2000 batches are
enough to train a good policy.

Run DAgger on the CartPole-v0 environment with a random policy as expert:

python -m imitation.scripts.train_imitation dagger with \
cartpole \
dagger.total_timesteps=2000 \
demonstrations.n_expert_demos=10 \
expert.policy_type=random

This will not produce any meaningful results, since a random policy is not a good expert.

Run AIRL on the MountainCar-v0 environment with a expert from the HuggingFace model hub:

python -m imitation.scripts.train_adversarial airl with \
seals_mountain_car \
total_timesteps=5000 \
expert.policy_type=ppo-huggingface \
demonstrations.n_expert_demos=500

Note: The small number of total timesteps is only for demonstration purposes and will not produce a good policy.

Run GAIL on the seals/Swimmer-v0 environment

Here we do not use the named configuration for the seals environment, but instead specify the gym_id directly. The
seals: prefix ensures that the seals package is imported and the environment is registered.

Note: The Swimmer environment needs mujoco_py to be installed.

python -m imitation.scripts.train_adversarial gail with \
environment.gym_id="seals:seals/Swimmer-v0" \
total_timesteps=5000 \
demonstrations.n_expert_demos=50

2.4.2 Algorithm Scripts

Call the algorithm scripts like this:

python -m imitation.scripts.<script> [command] with <named_config> <config_values>

10 Chapter 2. Citing imitation
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algorithm script command
BC train_imitation bc
DAgger train_imitation dagger
AIRL train_adversarial airl
GAIL train_adversarial gail
Preference Comparison train_preference_comparisons •

MCE IRL none •

Density Based Reward Estimation none •

2.4.3 Utility Scripts

Call the utility scripts like this:

python -m imitation.scripts.<script>

Functionality Script
Reinforcement Learning train_rl
Evaluating a Policy eval_policy
Parallel Execution of Algorithm Scripts parallel
Converting Trajectory Formats convert_trajs
Analyzing Experimental Results analyze

2.4.4 Output Directories

The results of the script runs are stored in the following directory structure:

output
<algo>

<environment>
<timestamp>

log
monitor
sacred -> ../../../sacred/<script_name>/1

sacred
<script_name>

1
_sources

It contains the final model, tensorboard logs, sacred logs and the sacred source files.

2.4. Command Line Interface 11
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2.5 Experts

The algorithms in the imitation library are all about learning from some kind of expert. In many cases this expert is a
piece of software itself. The imitation library natively supports experts trained using the stable-baselines3 reinforcement
learning library.

For example, BC and DAgger can learn from an expert policy and the command line interface of AIRL/GAIL allows
one to specify an expert to sample demonstrations from.

In the ../getting-started/first-steps tutorial, we first train an expert policy using the stable-baselines3 library and then
imitate it’s behavior using Behavioral Cloning (BC). In practice, you may want to load a pre-trained policy for perfor-
mance reasons.

2.5.1 Loading a policy from a file

The Python interface provides a load_policy() function to which you pass a policy_type, a VecEnv and any extra
kwargs to pass to the corresponding policy loader.

import numpy as np
from imitation.policies.serialize import load_policy
from imitation.util import util

venv = util.make_vec_env("your-env", n_envs=4, rng=np.random.default_rng())
local_policy = load_policy("ppo", venv, path="path/to/model.zip")

To load a policy from disk, use either ppo or sac as the policy type. The path is specified by path in the loader_kwargs
and it should either point to a zip file containing the policy or a directory containing a model.zip file that was created
by stable-baselines3.

In the command line interface the expert.policy_type and expert.loader_kwargs parameters define the expert policy to
load. For example, to train AIRL on a PPO expert, you would use the following command:

python -m imitation.scripts.train_adversarial airl \
with expert.policy_type=ppo expert.loader_kwargs.path="path/to/model.zip"

2.5.2 Loading a policy from HuggingFace

HuggingFace is a popular repository for pre-trained models.

To load a stable-baselines3 policy from HuggingFace, use either ppo-huggingface or sac-huggingface as the policy
type. By default, the policies are loaded from the HumanCompatibleAI organization, but you can override this by
setting the organization parameter in the loader_kwargs. When using the Python API, you also have to specify the
environment name as env_name.

import numpy as np
from imitation.policies.serialize import load_policy
from imitation.util import util

venv = util.make_vec_env("your-env", n_envs=4, rng=np.random.default_rng())
remote_policy = load_policy(

"ppo-huggingface",
organization="your-org",
env_name="your-env"

(continues on next page)
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(continued from previous page)

)
)

In the command line interface, the env-name is automatically injected into the loader_kwargs and does not need to be
defined explicitly. In this example, to train AIRL on a PPO expert that was loaded from your-org on HuggingFace:

python -m imitation.scripts.train_adversarial airl \
with expert.policy_type=ppo-huggingface expert.loader_kwargs.organization=your-org

2.5.3 Uploading a policy to HuggingFace

The huggingface-sb3 package provides utilities to push your models to HuggingFace and load them from there. Make
sure to use the naming scheme helpers as described in the readme. Otherwise, the loader will not be able to find your
model in the repository.

For a convenient high-level interface to train RL models and upload them to HuggingFace, we recommend using the
rl-baselines3-zoo.

2.5.4 Custom expert types

If you want to use a custom expert type, you can write a corresponding factory function according to
PolicyLoaderFn() and then register it at the policy_registry. For example:

from imitation.policies.serialize import policy_registry
from stable_baselines3.common import policies

def my_policy_loader(venv, some_param: int) -> policies.BasePolicy:
# load your policy here
return policy

policy_registry.register("my-policy", my_policy_loader)

Then, you can use my-policy as the policy_type in the command line interface or the Python API:

python -m imitation.scripts.train_adversarial airl \
with expert.policy_type=my-policy expert.loader_kwargs.some_param=42

2.6 Trajectories

For imitation learning we need trajectories. Trajectories are sequences of observations and actions and sometimes
rewards, which are generated by an agent interacting with an environment. They are also called rollouts or episodes.
Some are generated by experts and serve as demonstrations, others are generated by the agent and serve as training data
for a discriminator. In this library they are stored in a Trajectory dataclass:

@dataclasses.dataclass(frozen=True)
class Trajectory:

obs: np.ndarray
"""Observations, shape (trajectory_len + 1, ) + observation_shape."""

(continues on next page)
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(continued from previous page)

acts: np.ndarray
"""Actions, shape (trajectory_len, ) + action_shape."""

infos: Optional[np.ndarray]
"""An array of info dicts, shape (trajectory_len, )."""

terminal: bool
"""Does this trajectory (fragment) end in a terminal state?"""

The info dictionaries are optional and can contain arbitrary information. Look at the Trajectory class as well as
the gymnasium documentation for more details. TrajectoryWithRew is a subclass of Trajectory and has another
rews field, which is an array of rewards of shape (trajectory_len, ).

Usually, they are passed around as sequences of trajectories.

Some algorithms do not need as much information about the ordering of states, actions and rewards. Rather than using
trajectories, these algorithms can make use of individual Transitions (flattened trajectories).

2.6.1 Generating Trajectories

To generate trajectories from a given policy, run the following command:

import numpy as np
import imitation.data.rollout as rollout

your_trajectories = rollout.rollout(
your_policy,
your_env,
sample_until=rollout.make_sample_until(min_episodes=10),
rng=np.random.default_rng(),
unwrap=False,

)

2.6.2 Storing/Loading Trajectories

Trajectories can be stored on disk or uploaded to the HuggingFace Dataset Hub.

This will store the sequence of trajectories into a directory at your_path as a HuggingFace Dataset:

from imitation.data import serialize
serialize.save(your_path, your_trajectories)

In the same way you can load trajectories from a HuggingFace Dataset:

from imitation.data import serialize
your_trajectories = serialize.load(your_path)

Note that some older, now deprecated, trajectory formats are supported by this loader, but not by the saver.

14 Chapter 2. Citing imitation
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2.6.3 Sharing Trajectories with the HuggingFace Dataset Hub

To share your trajectories with the HuggingFace Dataset Hub, you need to create a HuggingFace account and log in
with the HuggingFace CLI:

$ huggingface-cli login

Then you can upload your trajectories to the HuggingFace Dataset Hub:

from imitation.data.huggingface_utils import trajectories_to_dataset

trajectories_to_dataset(your_trajectories).push_to_hub("your_hf_name/your_dataset_name")

To use a public dataset from the HuggingFace Dataset Hub, you can use the following code:

import datasets
from imitation.data.huggingface_utils import TrajectoryDatasetSequence

your_dataset = datasets.load_dataset("your_hf_name/your_dataset_name")
your_trajectories = TrajectoryDatasetSequence(your_dataset["train"])

The TrajectoryDatasetSequence wraps a HuggingFace dataset so it can be used in the same way as a list of
trajectories.

For example, you can analyze the dataset with imitation.data.rollout.rollout_stats() to get the mean return:

from imitation.data.rollout import rollout_stats

stats = rollout_stats(your_trajectories)
print(stats["return_mean"])

2.7 Reward Networks

The goal of both inverse reinforcement learning (IRL) algorithms (e.g. AIRL, GAIL) and preference comparison is to
discover a reward function. In imitation learning, these discovered rewards are parameterized by reward networks.

2.7.1 Reward Network API

Reward networks need to support two separate but equally important modes of operation. First, these networks need
to produce a reward that can be differentiated and used for training the reward network. These rewards are provided by
the forward method. Second, these networks need to produce a reward that can be used for training policies. These
rewards are provided by the predict_processed method, which applies additional post-processing that is unhelpful
during reward network training.

2.7. Reward Networks 15
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2.7.2 Reward Network Architecture

In imitation learning, reward networks are torch.nn.Module. Out of the box, imitation provides a few reward network
architectures such as multi-layer perceptron BasicRewardNet and a convolutional neural net CNNRewardNet. To
implement your own custom reward network, you can subclass RewardNet.

from imitation.rewards.reward_nets import RewardNet
import torch as th

class MyRewardNet(RewardNet):
def __init__(self, observation_space, action_space):

super().__init__(observation_space, action_space)
# initialize your custom reward network here

def forward(self,
state: th.Tensor, # (batch_size, *obs_shape)
action: th.Tensor, # (batch_size, *action_shape)
next_state: th.Tensor, # (batch_size, *obs_shape)
done: th.Tensor, # (batch_size,)

) -> th.Tensor:
# implement your custom reward network here
return th.zeros_like(done) # (batch_size,)

2.7.3 Replace an Environment’s Reward with a Reward Network

In order to use a reward network to train a policy, we need to integrate it into an environment. This is done by wrapping
the environment in a RewardVecEnvWrapper. This wrapper replaces the environment’s reward function with the
reward network’s function.

from imitation.util import util
from imitation.rewards.reward_wrapper import RewardVecEnvWrapper
from imitation.rewards.reward_nets import BasicRewardNet

reward_net = BasicRewardNet(obs_space, action_space)
venv = util.make_vec_env("Pendulum-v1", n_envs=3, rng=rng)
venv = RewardVecEnvWrapper(venv, reward_net.predict_processed)

2.7.4 Reward Network Wrappers

Imitation learning algorithms should converge to a reward function that will theoretically induce the optimal or soft-
optimal policy. However, these reward functions may not always be well suited for training RL agents, or we may want
to modify them to encourage exploration, for instance.

There are two types of wrapper:

• ForwardWrapper allows for direct modification of the results of the reward network’s forward method. It
is used during the learning of the reward network and thus must be differentiable. These wrappers are always
applied first and are thus take effect regardless of weather you call forward, predict or predict_processed. They
are used for applying transformations like potential shaping (see ShapedRewardNet).

• PredictProcessedWrapper modifies the predict_processed call to the reward network. Thus this type of
reward network wrapper is designed to only modify the reward when it is being used to train/evaluate a policy
but not when we are taking gradients on it. Thus it does not have to be differentiable.
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The most commonly used is the NormalizedRewardNet which is a predict procssed wrapper. This class uses a nor-
malization layer to standardize the output of the reward function using its running mean and variance, which is useful
for stabilizing training. When a reward network is saved, its wrappers are saved along with it, so that the normalization
fit during reward learning can be used during future policy learning or evaluation.

from imitation.rewards.reward_nets import NormalizedRewardNet
from imitation.util.networks import RunningNorm
train_reward_net = NormalizedRewardNet(

reward_net,
normalize_output_layer=RunningNorm,

)

Note: The reward normalization wrapper does _not_ function identically to stable baselines3’s VecNormalize envi-
ronment wrapper. First, it does not normalize the observations. Second, unlike VecNormalize, it scales and centers
the reward using the base rewards’s mean and variance. The VecNormalizes scales the reward down using a running
estimate of the _return_.

By default, the normalization wrapper updates the normalization on each call to predict_processed. This behavior
can be altered as shown below.

from functools import partial
eval_rew_fn = partial(reward_net.predict_processed, update_stats=False)

2.7.5 Serializing and Deserializing Reward Networks

Reward networks, wrappers included, are serialized simply by calling th.save(reward_net, path).

However, when evaluating reward networks, we may or may not want to include the wrappers it was trained with. To
load the reward network just as it was saved, wrappers included, we can simply call th.load(path). When using
a learned reward network to train or evaluate a policy, we can select whether or not to include the reward network
wrappers and convert it into a function using the load_reward utility. For example, we might want to remove or keep
the reward normalization fit during training in the evaluation phase.

import torch as th
from imitation.rewards.serialize import load_reward
from imitation.rewards.reward_nets import NormalizedRewardNet

th.save(train_reward_net, path)
train_reward_net = th.load(path)
# We can also load the reward network as a reward function for use in evaluation
eval_rew_fn_normalized = load_reward(reward_type="RewardNet_normalized", reward_
→˓path=path, venv=venv)
eval_rew_fn_unnormalized = load_reward(reward_type="RewardNet_unnormalized", reward_
→˓path=path, venv=venv)
# If we want to continue to update the reward networks normalization by default it is␣
→˓frozen for evaluation and retraining
rew_fn_normalized = load_reward(reward_type="RewardNet_normalized", reward_path=path,␣
→˓venv=venv, update_stats=True)
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2.8 Limitations on Horizon Length

Warning: Variable Horizon Environments Considered Harmful

Reinforcement learning (RL) algorithms are commonly trained and evaluated in variable horizon environments. In
these environments, the episode ends when some termination condition is reached (rather than after a fixed number of
steps). This typically corresponds to success, such as reaching the top of the mountain in MountainCar, or to failure,
such as the pole falling down in CartPole. A variable horizon will tend to speed up RL training, by increasing the
proportion of samples where the agent’s actions still have a meaningful impact on the reward, pruning out states that
are already a foregone conclusion.

However, termination conditions must be carefully hand-designed for each environment. Their inclusion therefore
provides a significant source of information about the reward. Evaluating reward and imitation learning algorithms in
variable-horizon environments can therefore be deeply misleading. In fact, reward learning in commonly used variable
horizon environments such as MountainCar and CartPole can be solved by learning a single bit: the sign of the
reward. Of course, an algorithm being able to learn a single bit predicts very little about its performance in real-world
tasks, that do not usually come with such an informative termination condition.

To make matters worse, some algorithms have a strong inductive bias towards a particular sign. Indeed, Figure 5
of Kostrikov et al (2021) shows that GAIL is able to reach a third of expert performance even without seeing any
expert demonstrations. Consequently, algorithms that happen to have an inductive bias aligned with the task (e.g.
positive reward bias for environments where longer episodes are better) may outperform unbiased algorithms on certain
environments. Conversely, algorithms with a misaligned inductive bias will perform worse than an unbiased algorithm.
This may lead to illusory discrepancies between algorithms, or even different implementations of the same algorithm.

Kostrikov et al (2021) introduces a way to correct for this bias. However, this does not solve the problem of information
leakage. Rather, it merely ensures that different algorithms are all able to equally exploit the information leak provided
by the termination condition.

In light of this issue, we would strongly recommend users evaluate imitation and other reward or imitation learning
algorithms only in fixed-horizon environments. This is a common, though unfortunately not ubiquitous, practice in
reward learning papers. For example, Christiano et al (2017) use fixed horizon environments because:

Removing variable length episodes leaves the agent with only the information encoded in the environment
itself; human feedback provides its only guidance about what it ought to do.

Many environments, like HalfCheetah, are naturally fixed-horizon. Moreover, most variable-horizon tasks can be
easily converted into fixed-horizon tasks. Our sister project seals provides fixed-horizon versions of many commonly
used MuJoCo continuous control tasks, as well as mitigating other potential pitfalls in reward learning evaluation.

Given the serious issues with evaluation and training in variable horizon tasks, imitation will by default throw an
error if training AIRL, GAIL or DRLHP in variable horizon tasks. If you have read this document and understand the
problems that variable horizon tasks can cause but still want to train in variable horizon settings, you can override this
safety check by setting allow_variable_horizon=True. Note this check is not applied for BC or DAgger, which
operate on individual transitions (not episodes) and so cannot exploit the information leak.

Usage with allow_variable_horizon=True is not officially supported, and we will not optimize imitation algo-
rithms to perform well in this situation, as it would not represent real progress. Examples of situations where setting
this flag may nonetheless be appropriate include:

1. Investigating the bias introduced by variable horizon tasks – e.g. comparing variable to fixed horizon tasks.

2. For unit tests to verify algorithms continue to run on variable horizon environments.

3. Where the termination condition is trivial (e.g. has the robot fallen over?) and the target behaviour is complex
(e.g. solve a Rubik’s cube). In this case, while the termination condition still helps reward and imitation learning,
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the problem remains highly non-trivial even with this information side-channel. However, the existence of this
side-channel should of course be prominently disclosed.

See this GitHub issue for further discussion.

2.8.1 Non-Support for Infinite Length Horizons

At the moment, we do not support infinite-length horizons. Many of the imitation algorithms, especially those relying
on RL, do not easily port over to infinite-horizon setups. Similarly, much of the logging and reward calculation logic
assumes the existence of a finite horizon. Although we may explore workarounds in the future, this is not a feature that
we can currently support.

2.9 Behavioral Cloning (BC)

Behavioral cloning directly learns a policy by using supervised learning on observation-action pairs from expert demon-
strations. It is a simple approach to learning a policy, but the policy often generalizes poorly and does not recover well
from errors.

Alternatives to behavioral cloning include DAgger (similar but gathers on-policy demonstrations) and GAIL/AIRL
(more robust approaches to learning from demonstrations).

2.9.1 Example

Detailed example notebook: Train an Agent using Behavior Cloning

import numpy as np
import gym
from stable_baselines3 import PPO
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.vec_env import DummyVecEnv
from stable_baselines3.ppo import MlpPolicy

from imitation.algorithms import bc
from imitation.data import rollout
from imitation.data.wrappers import RolloutInfoWrapper

rng = np.random.default_rng(0)
env = gym.make("CartPole-v1")
expert = PPO(policy=MlpPolicy, env=env)
expert.learn(1000)

rollouts = rollout.rollout(
expert,
DummyVecEnv([lambda: RolloutInfoWrapper(env)]),
rollout.make_sample_until(min_timesteps=None, min_episodes=50),
rng=rng,

)
transitions = rollout.flatten_trajectories(rollouts)

bc_trainer = bc.BC(
observation_space=env.observation_space,

(continues on next page)
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(continued from previous page)

action_space=env.action_space,
demonstrations=transitions,
rng=rng,

)
bc_trainer.train(n_epochs=1)
reward, _ = evaluate_policy(bc_trainer.policy, env, 10)
print("Reward:", reward)

2.9.2 API

class imitation.algorithms.bc.BC(*, observation_space, action_space, rng, policy=None,
demonstrations=None, batch_size=32, minibatch_size=None,
optimizer_cls=<class 'torch.optim.adam.Adam'>,
optimizer_kwargs=None, ent_weight=0.001, l2_weight=0.0,
device='auto', custom_logger=None)

Bases: DemonstrationAlgorithm

Behavioral cloning (BC).

Recovers a policy via supervised learning from observation-action pairs.

__init__(*, observation_space, action_space, rng, policy=None, demonstrations=None, batch_size=32,
minibatch_size=None, optimizer_cls=<class 'torch.optim.adam.Adam'>, optimizer_kwargs=None,
ent_weight=0.001, l2_weight=0.0, device='auto', custom_logger=None)

Builds BC.

Parameters

• observation_space (Space) – the observation space of the environment.

• action_space (Space) – the action space of the environment.

• rng (Generator) – the random state to use for the random number generator.

• policy (Optional[ActorCriticPolicy]) – a Stable Baselines3 policy; if unspecified,
defaults to FeedForward32Policy.

• demonstrations (Union[Iterable[Trajectory], Iterable[Mapping[str,
Union[ndarray, Tensor]]], TransitionsMinimal, None]) – Demonstrations from an
expert (optional). Transitions expressed directly as a types.TransitionsMinimal object, a
sequence of trajectories, or an iterable of transition batches (mappings from keywords to
arrays containing observations, etc).

• batch_size (int) – The number of samples in each batch of expert data.

• minibatch_size (Optional[int]) – size of minibatch to calculate gradients over. The
gradients are accumulated until batch_size examples are processed before making an op-
timization step. This is useful in GPU training to reduce memory usage, since fewer ex-
amples are loaded into memory at once, facilitating training with larger batch sizes, but is
generally slower. Must be a factor of batch_size. Optional, defaults to batch_size.

• optimizer_cls (Type[Optimizer]) – optimiser to use for supervised training.

• optimizer_kwargs (Optional[Mapping[str, Any]]) – keyword arguments, excluding
learning rate and weight decay, for optimiser construction.

• ent_weight (float) – scaling applied to the policy’s entropy regularization.
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• l2_weight (float) – scaling applied to the policy’s L2 regularization.

• device (Union[str, device]) – name/identity of device to place policy on.

• custom_logger (Optional[HierarchicalLogger]) – Where to log to; if None (de-
fault), creates a new logger.

Raises
ValueError – If weight_decay is specified in optimizer_kwargs (use the parameter l2_weight
instead), or if the batch size is not a multiple of the minibatch size.

allow_variable_horizon: bool

If True, allow variable horizon trajectories; otherwise error if detected.

property policy: ActorCriticPolicy

Returns a policy imitating the demonstration data.

Return type
ActorCriticPolicy

save_policy(policy_path)
Save policy to a path. Can be reloaded by .reconstruct_policy().

Parameters
policy_path (Union[str, bytes, PathLike]) – path to save policy to.

Return type
None

set_demonstrations(demonstrations)
Sets the demonstration data.

Changing the demonstration data on-demand can be useful for interactive algorithms like DAgger.

Parameters
demonstrations (Union[Iterable[Trajectory], Iterable[Mapping[str,
Union[ndarray, Tensor]]], TransitionsMinimal]) – Either a Torch DataLoader,
any other iterator that yields dictionaries containing “obs” and “acts” Tensors or NumPy
arrays, TransitionKind instance, or a Sequence of Trajectory objects.

Return type
None

train(*, n_epochs=None, n_batches=None, on_epoch_end=None, on_batch_end=None, log_interval=500,
log_rollouts_venv=None, log_rollouts_n_episodes=5, progress_bar=True, reset_tensorboard=False)

Train with supervised learning for some number of epochs.

Here an ‘epoch’ is just a complete pass through the expert data loader, as set by
self.set_expert_data_loader(). Note, that when you specify n_batches smaller than the number of
batches in an epoch, the on_epoch_end callback will never be called.

Parameters

• n_epochs (Optional[int]) – Number of complete passes made through expert data be-
fore ending training. Provide exactly one of n_epochs and n_batches.

• n_batches (Optional[int]) – Number of batches loaded from dataset before ending
training. Provide exactly one of n_epochs and n_batches.

• on_epoch_end (Optional[Callable[[], None]]) – Optional callback with no parameters
to run at the end of each epoch.
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• on_batch_end (Optional[Callable[[], None]]) – Optional callback with no parameters
to run at the end of each batch.

• log_interval (int) – Log stats after every log_interval batches.

• log_rollouts_venv (Optional[VecEnv]) – If not None, then this VecEnv (whose ob-
servation and actions spaces must match self.observation_space and self.action_space) is
used to generate rollout stats, including average return and average episode length. If None,
then no rollouts are generated.

• log_rollouts_n_episodes (int) – Number of rollouts to generate when calculating
rollout stats. Non-positive number disables rollouts.

• progress_bar (bool) – If True, then show a progress bar during training.

• reset_tensorboard (bool) – If True, then start plotting to Tensorboard from x=0 even if
.train() logged to Tensorboard previously. Has no practical effect if .train() is being called
for the first time.

2.10 Generative Adversarial Imitation Learning (GAIL)

GAIL learns a policy by simultaneously training it with a discriminator that aims to distinguish expert trajectories
against trajectories from the learned policy.

Note: GAIL paper: Generative Adversarial Imitation Learning

2.10.1 Example

Detailed example notebook: Train an Agent using Generative Adversarial Imitation Learning

import numpy as np
import gym
from stable_baselines3 import PPO
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.vec_env import DummyVecEnv
from stable_baselines3.ppo import MlpPolicy

from imitation.algorithms.adversarial.gail import GAIL
from imitation.data import rollout
from imitation.data.wrappers import RolloutInfoWrapper
from imitation.rewards.reward_nets import BasicRewardNet
from imitation.util.networks import RunningNorm
from imitation.util.util import make_vec_env

rng = np.random.default_rng(0)

env = gym.make("seals/CartPole-v0")
expert = PPO(policy=MlpPolicy, env=env, n_steps=64)
expert.learn(1000)

rollouts = rollout.rollout(
expert,

(continues on next page)
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make_vec_env(
"seals/CartPole-v0",
n_envs=5,
post_wrappers=[lambda env, _: RolloutInfoWrapper(env)],
rng=rng,

),
rollout.make_sample_until(min_timesteps=None, min_episodes=60),
rng=rng,

)

venv = make_vec_env("seals/CartPole-v0", n_envs=8, rng=rng)
learner = PPO(env=venv, policy=MlpPolicy)
reward_net = BasicRewardNet(

venv.observation_space,
venv.action_space,
normalize_input_layer=RunningNorm,

)
gail_trainer = GAIL(

demonstrations=rollouts,
demo_batch_size=1024,
gen_replay_buffer_capacity=2048,
n_disc_updates_per_round=4,
venv=venv,
gen_algo=learner,
reward_net=reward_net,

)

gail_trainer.train(20000)
rewards, _ = evaluate_policy(learner, venv, 100, return_episode_rewards=True)
print("Rewards:", rewards)

2.10.2 API

class imitation.algorithms.adversarial.gail.GAIL(*, demonstrations, demo_batch_size, venv, gen_algo,
reward_net, **kwargs)

Bases: AdversarialTrainer

Generative Adversarial Imitation Learning (GAIL).

__init__(*, demonstrations, demo_batch_size, venv, gen_algo, reward_net, **kwargs)
Generative Adversarial Imitation Learning.

Parameters

• demonstrations (Union[Iterable[Trajectory], Iterable[Mapping[str,
Union[ndarray, Tensor]]], TransitionsMinimal]) – Demonstrations from an
expert (optional). Transitions expressed directly as a types.TransitionsMinimal object, a
sequence of trajectories, or an iterable of transition batches (mappings from keywords to
arrays containing observations, etc).

• demo_batch_size (int) – The number of samples in each batch of expert data. The
discriminator batch size is twice this number because each discriminator batch contains a
generator sample for every expert sample.
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• venv (VecEnv) – The vectorized environment to train in.

• gen_algo (BaseAlgorithm) – The generator RL algorithm that is trained to maximize
discriminator confusion. Environment and logger will be set to venv and custom_logger.

• reward_net (RewardNet) – a Torch module that takes an observation, action and next
observation tensor as input, then computes the logits. Used as the GAIL discriminator.

• **kwargs – Passed through to AdversarialTrainer.__init__.

allow_variable_horizon: bool

If True, allow variable horizon trajectories; otherwise error if detected.

property logger: HierarchicalLogger

Return type
HierarchicalLogger

logits_expert_is_high(state, action, next_state, done, log_policy_act_prob=None)
Compute the discriminator’s logits for each state-action sample.

Parameters

• state (Tensor) – The state of the environment at the time of the action.

• action (Tensor) – The action taken by the expert or generator.

• next_state (Tensor) – The state of the environment after the action.

• done (Tensor) – whether a terminal state (as defined under the MDP of the task) has been
reached.

• log_policy_act_prob (Optional[Tensor]) – The log probability of the action taken
by the generator, log𝑃 (𝑎|𝑠).

Return type
Tensor

Returns
The logits of the discriminator for each state-action sample.

property policy: BasePolicy

Returns a policy imitating the demonstration data.

Return type
BasePolicy

property reward_test: RewardNet

Reward used to train policy at “test” time after adversarial training.

Return type
RewardNet

property reward_train: RewardNet

Reward used to train generator policy.

Return type
RewardNet

set_demonstrations(demonstrations)
Sets the demonstration data.

Changing the demonstration data on-demand can be useful for interactive algorithms like DAgger.
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Parameters
demonstrations (Union[Iterable[Trajectory], Iterable[Mapping[str,
Union[ndarray, Tensor]]], TransitionsMinimal]) – Either a Torch DataLoader,
any other iterator that yields dictionaries containing “obs” and “acts” Tensors or NumPy
arrays, TransitionKind instance, or a Sequence of Trajectory objects.

Return type
None

train(total_timesteps, callback=None)
Alternates between training the generator and discriminator.

Every “round” consists of a call to train_gen(self.gen_train_timesteps), a call to train_disc, and finally a
call to callback(round).

Training ends once an additional “round” would cause the number of transitions sampled from the envi-
ronment to exceed total_timesteps.

Parameters

• total_timesteps (int) – An upper bound on the number of transitions to sample from
the environment during training.

• callback (Optional[Callable[[int], None]]) – A function called at the end of ev-
ery round which takes in a single argument, the round number. Round numbers are in
range(total_timesteps // self.gen_train_timesteps).

Return type
None

train_disc(*, expert_samples=None, gen_samples=None)
Perform a single discriminator update, optionally using provided samples.

Parameters

• expert_samples (Optional[Mapping]) – Transition samples from the expert in dictio-
nary form. If provided, must contain keys corresponding to every field of the Transitions
dataclass except “infos”. All corresponding values can be either NumPy arrays or Tensors.
Extra keys are ignored. Must contain self.demo_batch_size samples. If this argument is
not provided, then self.demo_batch_size expert samples from self.demo_data_loader are
used by default.

• gen_samples (Optional[Mapping]) – Transition samples from the generator pol-
icy in same dictionary form as expert_samples. If provided, must contain exactly
self.demo_batch_size samples. If not provided, then take len(expert_samples) samples
from the generator replay buffer.

Return type
Mapping[str, float]

Returns
Statistics for discriminator (e.g. loss, accuracy).

train_gen(total_timesteps=None, learn_kwargs=None)
Trains the generator to maximize the discriminator loss.

After the end of training populates the generator replay buffer (used in discriminator training) with
self.disc_batch_size transitions.

Parameters
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• total_timesteps (Optional[int]) – The number of transitions to sample from
self.venv_train during training. By default, self.gen_train_timesteps.

• learn_kwargs (Optional[Mapping]) – kwargs for the Stable Baselines RLModel.learn()
method.

Return type
None

venv: VecEnv

The original vectorized environment.

venv_train: VecEnv

Like self.venv, but wrapped with train reward unless in debug mode.

If debug_use_ground_truth=True was passed into the initializer then self.venv_train is the same as self.venv.

venv_wrapped: VecEnvWrapper

class imitation.algorithms.adversarial.common.AdversarialTrainer(*, demonstrations,
demo_batch_size, venv,
gen_algo, reward_net,
demo_minibatch_size=None,
n_disc_updates_per_round=2,
log_dir='output/',
disc_opt_cls=<class
'torch.optim.adam.Adam'>,
disc_opt_kwargs=None,
gen_train_timesteps=None,
gen_replay_buffer_capacity=None,
custom_logger=None,
init_tensorboard=False,
init_tensorboard_graph=False,
de-
bug_use_ground_truth=False,
al-
low_variable_horizon=False)

Bases: DemonstrationAlgorithm[Transitions]

Base class for adversarial imitation learning algorithms like GAIL and AIRL.

__init__(*, demonstrations, demo_batch_size, venv, gen_algo, reward_net, demo_minibatch_size=None,
n_disc_updates_per_round=2, log_dir='output/', disc_opt_cls=<class 'torch.optim.adam.Adam'>,
disc_opt_kwargs=None, gen_train_timesteps=None, gen_replay_buffer_capacity=None,
custom_logger=None, init_tensorboard=False, init_tensorboard_graph=False,
debug_use_ground_truth=False, allow_variable_horizon=False)

Builds AdversarialTrainer.

Parameters

• demonstrations (Union[Iterable[Trajectory], Iterable[Mapping[str,
Union[ndarray, Tensor]]], TransitionsMinimal]) – Demonstrations from an
expert (optional). Transitions expressed directly as a types.TransitionsMinimal object, a
sequence of trajectories, or an iterable of transition batches (mappings from keywords to
arrays containing observations, etc).

• demo_batch_size (int) – The number of samples in each batch of expert data. The
discriminator batch size is twice this number because each discriminator batch contains a
generator sample for every expert sample.
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• venv (VecEnv) – The vectorized environment to train in.

• gen_algo (BaseAlgorithm) – The generator RL algorithm that is trained to maximize
discriminator confusion. Environment and logger will be set to venv and custom_logger.

• reward_net (RewardNet) – a Torch module that takes an observation, action and next
observation tensors as input and computes a reward signal.

• demo_minibatch_size (Optional[int]) – size of minibatch to calculate gradients over.
The gradients are accumulated until the entire batch is processed before making an opti-
mization step. This is useful in GPU training to reduce memory usage, since fewer exam-
ples are loaded into memory at once, facilitating training with larger batch sizes, but is gen-
erally slower. Must be a factor of demo_batch_size. Optional, defaults to demo_batch_size.

• n_disc_updates_per_round (int) – The number of discriminator updates after each
round of generator updates in AdversarialTrainer.learn().

• log_dir (Union[str, bytes, PathLike]) – Directory to store TensorBoard logs, plots,
etc. in.

• disc_opt_cls (Type[Optimizer]) – The optimizer for discriminator training.

• disc_opt_kwargs (Optional[Mapping]) – Parameters for discriminator training.

• gen_train_timesteps (Optional[int]) – The number of steps to train the generator
policy for each iteration. If None, then defaults to the batch size (for on-policy) or number
of environments (for off-policy).

• gen_replay_buffer_capacity (Optional[int]) – The capacity of the generator replay
buffer (the number of obs-action-obs samples from the generator that can be stored). By
default this is equal to gen_train_timesteps, meaning that we sample only from the most
recent batch of generator samples.

• custom_logger (Optional[HierarchicalLogger]) – Where to log to; if None (de-
fault), creates a new logger.

• init_tensorboard (bool) – If True, makes various discriminator TensorBoard sum-
maries.

• init_tensorboard_graph (bool) – If both this and init_tensorboard are True, then
write a Tensorboard graph summary to disk.

• debug_use_ground_truth (bool) – If True, use the ground truth reward for
self.train_env. This disables the reward wrapping that would normally replace the envi-
ronment reward with the learned reward. This is useful for sanity checking that the policy
training is functional.

• allow_variable_horizon (bool) – If False (default), algorithm will raise an exception if
it detects trajectories of different length during training. If True, overrides this safety check.
WARNING: variable horizon episodes leak information about the reward via termination
condition, and can seriously confound evaluation. Read https://imitation.readthedocs.io/
en/latest/guide/variable_horizon.html before overriding this.

Raises
ValueError – if the batch size is not a multiple of the minibatch size.

allow_variable_horizon: bool

If True, allow variable horizon trajectories; otherwise error if detected.

property logger: HierarchicalLogger

Return type
HierarchicalLogger
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abstract logits_expert_is_high(state, action, next_state, done, log_policy_act_prob=None)
Compute the discriminator’s logits for each state-action sample.

A high value corresponds to predicting expert, and a low value corresponds to predicting generator.

Parameters

• state (Tensor) – state at time t, of shape (batch_size,) + state_shape.

• action (Tensor) – action taken at time t, of shape (batch_size,) + action_shape.

• next_state (Tensor) – state at time t+1, of shape (batch_size,) + state_shape.

• done (Tensor) – binary episode completion flag after action at time t, of shape
(batch_size,).

• log_policy_act_prob (Optional[Tensor]) – log probability of generator policy taking
action at time t.

Return type
Tensor

Returns
Discriminator logits of shape (batch_size,). A high output indicates an expert-like transition.

property policy: BasePolicy

Returns a policy imitating the demonstration data.

Return type
BasePolicy

abstract property reward_test: RewardNet

Reward used to train policy at “test” time after adversarial training.

Return type
RewardNet

abstract property reward_train: RewardNet

Reward used to train generator policy.

Return type
RewardNet

set_demonstrations(demonstrations)
Sets the demonstration data.

Changing the demonstration data on-demand can be useful for interactive algorithms like DAgger.

Parameters
demonstrations (Union[Iterable[Trajectory], Iterable[Mapping[str,
Union[ndarray, Tensor]]], TransitionsMinimal]) – Either a Torch DataLoader,
any other iterator that yields dictionaries containing “obs” and “acts” Tensors or NumPy
arrays, TransitionKind instance, or a Sequence of Trajectory objects.

Return type
None

train(total_timesteps, callback=None)
Alternates between training the generator and discriminator.

Every “round” consists of a call to train_gen(self.gen_train_timesteps), a call to train_disc, and finally a
call to callback(round).
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Training ends once an additional “round” would cause the number of transitions sampled from the envi-
ronment to exceed total_timesteps.

Parameters

• total_timesteps (int) – An upper bound on the number of transitions to sample from
the environment during training.

• callback (Optional[Callable[[int], None]]) – A function called at the end of ev-
ery round which takes in a single argument, the round number. Round numbers are in
range(total_timesteps // self.gen_train_timesteps).

Return type
None

train_disc(*, expert_samples=None, gen_samples=None)
Perform a single discriminator update, optionally using provided samples.

Parameters

• expert_samples (Optional[Mapping]) – Transition samples from the expert in dictio-
nary form. If provided, must contain keys corresponding to every field of the Transitions
dataclass except “infos”. All corresponding values can be either NumPy arrays or Tensors.
Extra keys are ignored. Must contain self.demo_batch_size samples. If this argument is
not provided, then self.demo_batch_size expert samples from self.demo_data_loader are
used by default.

• gen_samples (Optional[Mapping]) – Transition samples from the generator pol-
icy in same dictionary form as expert_samples. If provided, must contain exactly
self.demo_batch_size samples. If not provided, then take len(expert_samples) samples
from the generator replay buffer.

Return type
Mapping[str, float]

Returns
Statistics for discriminator (e.g. loss, accuracy).

train_gen(total_timesteps=None, learn_kwargs=None)
Trains the generator to maximize the discriminator loss.

After the end of training populates the generator replay buffer (used in discriminator training) with
self.disc_batch_size transitions.

Parameters

• total_timesteps (Optional[int]) – The number of transitions to sample from
self.venv_train during training. By default, self.gen_train_timesteps.

• learn_kwargs (Optional[Mapping]) – kwargs for the Stable Baselines RLModel.learn()
method.

Return type
None

venv: VecEnv

The original vectorized environment.

venv_train: VecEnv

Like self.venv, but wrapped with train reward unless in debug mode.

If debug_use_ground_truth=True was passed into the initializer then self.venv_train is the same as self.venv.

2.10. Generative Adversarial Imitation Learning (GAIL) 29



imitation

venv_wrapped: VecEnvWrapper

2.11 Adversarial Inverse Reinforcement Learning (AIRL)

AIRL, similar to GAIL, adversarially trains a policy against a discriminator that aims to distinguish the expert demon-
strations from the learned policy. Unlike GAIL, AIRL recovers a reward function that is more generalizable to changes
in environment dynamics.

The expert policy must be stochastic.

Note: AIRL paper: Learning Robust Rewards with Adversarial Inverse Reinforcement Learning

2.11.1 Example

Detailed example notebook: Train an Agent using Adversarial Inverse Reinforcement Learning

import numpy as np
import gym
from stable_baselines3 import PPO
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.vec_env import DummyVecEnv
from stable_baselines3.ppo import MlpPolicy

from imitation.algorithms.adversarial.airl import AIRL
from imitation.data import rollout
from imitation.data.wrappers import RolloutInfoWrapper
from imitation.rewards.reward_nets import BasicShapedRewardNet
from imitation.util.networks import RunningNorm
from imitation.util.util import make_vec_env

rng = np.random.default_rng(0)

env = gym.make("seals/CartPole-v0")
expert = PPO(policy=MlpPolicy, env=env)
expert.learn(1000)

rollouts = rollout.rollout(
expert,
make_vec_env(

"seals/CartPole-v0",
rng=rng,
n_envs=5,
post_wrappers=[lambda env, _: RolloutInfoWrapper(env)],

),
rollout.make_sample_until(min_timesteps=None, min_episodes=60),
rng=rng,

)

venv = make_vec_env("seals/CartPole-v0", rng=rng, n_envs=8)
learner = PPO(env=venv, policy=MlpPolicy)

(continues on next page)
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(continued from previous page)

reward_net = BasicShapedRewardNet(
venv.observation_space,
venv.action_space,
normalize_input_layer=RunningNorm,

)
airl_trainer = AIRL(

demonstrations=rollouts,
demo_batch_size=1024,
gen_replay_buffer_capacity=2048,
n_disc_updates_per_round=4,
venv=venv,
gen_algo=learner,
reward_net=reward_net,

)
airl_trainer.train(20000)
rewards, _ = evaluate_policy(learner, venv, 100, return_episode_rewards=True)
print("Rewards:", rewards)

2.11.2 API

class imitation.algorithms.adversarial.airl.AIRL(*, demonstrations, demo_batch_size, venv, gen_algo,
reward_net, **kwargs)

Bases: AdversarialTrainer

Adversarial Inverse Reinforcement Learning (AIRL).

__init__(*, demonstrations, demo_batch_size, venv, gen_algo, reward_net, **kwargs)
Builds an AIRL trainer.

Parameters

• demonstrations (Union[Iterable[Trajectory], Iterable[Mapping[str,
Union[ndarray, Tensor]]], TransitionsMinimal]) – Demonstrations from an
expert (optional). Transitions expressed directly as a types.TransitionsMinimal object, a
sequence of trajectories, or an iterable of transition batches (mappings from keywords to
arrays containing observations, etc).

• demo_batch_size (int) – The number of samples in each batch of expert data. The
discriminator batch size is twice this number because each discriminator batch contains a
generator sample for every expert sample.

• venv (VecEnv) – The vectorized environment to train in.

• gen_algo (BaseAlgorithm) – The generator RL algorithm that is trained to maximize
discriminator confusion. Environment and logger will be set to venv and custom_logger.

• reward_net (RewardNet) – Reward network; used as part of AIRL discriminator.

• **kwargs – Passed through to AdversarialTrainer.__init__.

Raises
TypeError – If gen_algo.policy does not have an evaluate_actions attribute (present in Ac-
torCriticPolicy), needed to compute log-probability of actions.

allow_variable_horizon: bool

If True, allow variable horizon trajectories; otherwise error if detected.
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property logger: HierarchicalLogger

Return type
HierarchicalLogger

logits_expert_is_high(state, action, next_state, done, log_policy_act_prob=None)
Compute the discriminator’s logits for each state-action sample.

In Fu’s AIRL paper (https://arxiv.org/pdf/1710.11248.pdf), the discriminator output was given as

𝐷𝜃(𝑠, 𝑎) =
exp 𝑟𝜃(𝑠, 𝑎)

exp 𝑟𝜃(𝑠, 𝑎) + 𝜋(𝑎|𝑠)

with a high value corresponding to the expert and a low value corresponding to the generator.

In other words, the discriminator output is the probability that the action is taken by the expert rather than
the generator.

The logit of the above is given as

logit(𝐷𝜃(𝑠, 𝑎)) = 𝑟𝜃(𝑠, 𝑎)− log 𝜋(𝑎|𝑠)

which is what is returned by this function.

Parameters

• state (Tensor) – The state of the environment at the time of the action.

• action (Tensor) – The action taken by the expert or generator.

• next_state (Tensor) – The state of the environment after the action.

• done (Tensor) – whether a terminal state (as defined under the MDP of the task) has been
reached.

• log_policy_act_prob (Optional[Tensor]) – The log probability of the action taken
by the generator, log 𝜋(𝑎|𝑠).

Return type
Tensor

Returns
The logits of the discriminator for each state-action sample.

Raises
TypeError – If log_policy_act_prob is None.

property policy: BasePolicy

Returns a policy imitating the demonstration data.

Return type
BasePolicy

property reward_test: RewardNet

Returns the unshaped version of reward network used for testing.

Return type
RewardNet

property reward_train: RewardNet

Reward used to train generator policy.

Return type
RewardNet
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set_demonstrations(demonstrations)
Sets the demonstration data.

Changing the demonstration data on-demand can be useful for interactive algorithms like DAgger.

Parameters
demonstrations (Union[Iterable[Trajectory], Iterable[Mapping[str,
Union[ndarray, Tensor]]], TransitionsMinimal]) – Either a Torch DataLoader,
any other iterator that yields dictionaries containing “obs” and “acts” Tensors or NumPy
arrays, TransitionKind instance, or a Sequence of Trajectory objects.

Return type
None

train(total_timesteps, callback=None)
Alternates between training the generator and discriminator.

Every “round” consists of a call to train_gen(self.gen_train_timesteps), a call to train_disc, and finally a
call to callback(round).

Training ends once an additional “round” would cause the number of transitions sampled from the envi-
ronment to exceed total_timesteps.

Parameters

• total_timesteps (int) – An upper bound on the number of transitions to sample from
the environment during training.

• callback (Optional[Callable[[int], None]]) – A function called at the end of ev-
ery round which takes in a single argument, the round number. Round numbers are in
range(total_timesteps // self.gen_train_timesteps).

Return type
None

train_disc(*, expert_samples=None, gen_samples=None)
Perform a single discriminator update, optionally using provided samples.

Parameters

• expert_samples (Optional[Mapping]) – Transition samples from the expert in dictio-
nary form. If provided, must contain keys corresponding to every field of the Transitions
dataclass except “infos”. All corresponding values can be either NumPy arrays or Tensors.
Extra keys are ignored. Must contain self.demo_batch_size samples. If this argument is
not provided, then self.demo_batch_size expert samples from self.demo_data_loader are
used by default.

• gen_samples (Optional[Mapping]) – Transition samples from the generator pol-
icy in same dictionary form as expert_samples. If provided, must contain exactly
self.demo_batch_size samples. If not provided, then take len(expert_samples) samples
from the generator replay buffer.

Return type
Mapping[str, float]

Returns
Statistics for discriminator (e.g. loss, accuracy).

train_gen(total_timesteps=None, learn_kwargs=None)
Trains the generator to maximize the discriminator loss.
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After the end of training populates the generator replay buffer (used in discriminator training) with
self.disc_batch_size transitions.

Parameters

• total_timesteps (Optional[int]) – The number of transitions to sample from
self.venv_train during training. By default, self.gen_train_timesteps.

• learn_kwargs (Optional[Mapping]) – kwargs for the Stable Baselines RLModel.learn()
method.

Return type
None

venv: VecEnv

The original vectorized environment.

venv_train: VecEnv

Like self.venv, but wrapped with train reward unless in debug mode.

If debug_use_ground_truth=True was passed into the initializer then self.venv_train is the same as self.venv.

venv_wrapped: VecEnvWrapper

class imitation.algorithms.adversarial.common.AdversarialTrainer(*, demonstrations,
demo_batch_size, venv,
gen_algo, reward_net,
demo_minibatch_size=None,
n_disc_updates_per_round=2,
log_dir='output/',
disc_opt_cls=<class
'torch.optim.adam.Adam'>,
disc_opt_kwargs=None,
gen_train_timesteps=None,
gen_replay_buffer_capacity=None,
custom_logger=None,
init_tensorboard=False,
init_tensorboard_graph=False,
de-
bug_use_ground_truth=False,
al-
low_variable_horizon=False)

Bases: DemonstrationAlgorithm[Transitions]

Base class for adversarial imitation learning algorithms like GAIL and AIRL.

__init__(*, demonstrations, demo_batch_size, venv, gen_algo, reward_net, demo_minibatch_size=None,
n_disc_updates_per_round=2, log_dir='output/', disc_opt_cls=<class 'torch.optim.adam.Adam'>,
disc_opt_kwargs=None, gen_train_timesteps=None, gen_replay_buffer_capacity=None,
custom_logger=None, init_tensorboard=False, init_tensorboard_graph=False,
debug_use_ground_truth=False, allow_variable_horizon=False)

Builds AdversarialTrainer.

Parameters

• demonstrations (Union[Iterable[Trajectory], Iterable[Mapping[str,
Union[ndarray, Tensor]]], TransitionsMinimal]) – Demonstrations from an
expert (optional). Transitions expressed directly as a types.TransitionsMinimal object, a
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sequence of trajectories, or an iterable of transition batches (mappings from keywords to
arrays containing observations, etc).

• demo_batch_size (int) – The number of samples in each batch of expert data. The
discriminator batch size is twice this number because each discriminator batch contains a
generator sample for every expert sample.

• venv (VecEnv) – The vectorized environment to train in.

• gen_algo (BaseAlgorithm) – The generator RL algorithm that is trained to maximize
discriminator confusion. Environment and logger will be set to venv and custom_logger.

• reward_net (RewardNet) – a Torch module that takes an observation, action and next
observation tensors as input and computes a reward signal.

• demo_minibatch_size (Optional[int]) – size of minibatch to calculate gradients over.
The gradients are accumulated until the entire batch is processed before making an opti-
mization step. This is useful in GPU training to reduce memory usage, since fewer exam-
ples are loaded into memory at once, facilitating training with larger batch sizes, but is gen-
erally slower. Must be a factor of demo_batch_size. Optional, defaults to demo_batch_size.

• n_disc_updates_per_round (int) – The number of discriminator updates after each
round of generator updates in AdversarialTrainer.learn().

• log_dir (Union[str, bytes, PathLike]) – Directory to store TensorBoard logs, plots,
etc. in.

• disc_opt_cls (Type[Optimizer]) – The optimizer for discriminator training.

• disc_opt_kwargs (Optional[Mapping]) – Parameters for discriminator training.

• gen_train_timesteps (Optional[int]) – The number of steps to train the generator
policy for each iteration. If None, then defaults to the batch size (for on-policy) or number
of environments (for off-policy).

• gen_replay_buffer_capacity (Optional[int]) – The capacity of the generator replay
buffer (the number of obs-action-obs samples from the generator that can be stored). By
default this is equal to gen_train_timesteps, meaning that we sample only from the most
recent batch of generator samples.

• custom_logger (Optional[HierarchicalLogger]) – Where to log to; if None (de-
fault), creates a new logger.

• init_tensorboard (bool) – If True, makes various discriminator TensorBoard sum-
maries.

• init_tensorboard_graph (bool) – If both this and init_tensorboard are True, then
write a Tensorboard graph summary to disk.

• debug_use_ground_truth (bool) – If True, use the ground truth reward for
self.train_env. This disables the reward wrapping that would normally replace the envi-
ronment reward with the learned reward. This is useful for sanity checking that the policy
training is functional.

• allow_variable_horizon (bool) – If False (default), algorithm will raise an exception if
it detects trajectories of different length during training. If True, overrides this safety check.
WARNING: variable horizon episodes leak information about the reward via termination
condition, and can seriously confound evaluation. Read https://imitation.readthedocs.io/
en/latest/guide/variable_horizon.html before overriding this.

Raises
ValueError – if the batch size is not a multiple of the minibatch size.
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allow_variable_horizon: bool

If True, allow variable horizon trajectories; otherwise error if detected.

abstract logits_expert_is_high(state, action, next_state, done, log_policy_act_prob=None)
Compute the discriminator’s logits for each state-action sample.

A high value corresponds to predicting expert, and a low value corresponds to predicting generator.

Parameters

• state (Tensor) – state at time t, of shape (batch_size,) + state_shape.

• action (Tensor) – action taken at time t, of shape (batch_size,) + action_shape.

• next_state (Tensor) – state at time t+1, of shape (batch_size,) + state_shape.

• done (Tensor) – binary episode completion flag after action at time t, of shape
(batch_size,).

• log_policy_act_prob (Optional[Tensor]) – log probability of generator policy taking
action at time t.

Return type
Tensor

Returns
Discriminator logits of shape (batch_size,). A high output indicates an expert-like transition.

property policy: BasePolicy

Returns a policy imitating the demonstration data.

Return type
BasePolicy

abstract property reward_test: RewardNet

Reward used to train policy at “test” time after adversarial training.

Return type
RewardNet

abstract property reward_train: RewardNet

Reward used to train generator policy.

Return type
RewardNet

set_demonstrations(demonstrations)
Sets the demonstration data.

Changing the demonstration data on-demand can be useful for interactive algorithms like DAgger.

Parameters
demonstrations (Union[Iterable[Trajectory], Iterable[Mapping[str,
Union[ndarray, Tensor]]], TransitionsMinimal]) – Either a Torch DataLoader,
any other iterator that yields dictionaries containing “obs” and “acts” Tensors or NumPy
arrays, TransitionKind instance, or a Sequence of Trajectory objects.

Return type
None
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train(total_timesteps, callback=None)
Alternates between training the generator and discriminator.

Every “round” consists of a call to train_gen(self.gen_train_timesteps), a call to train_disc, and finally a
call to callback(round).

Training ends once an additional “round” would cause the number of transitions sampled from the envi-
ronment to exceed total_timesteps.

Parameters

• total_timesteps (int) – An upper bound on the number of transitions to sample from
the environment during training.

• callback (Optional[Callable[[int], None]]) – A function called at the end of ev-
ery round which takes in a single argument, the round number. Round numbers are in
range(total_timesteps // self.gen_train_timesteps).

Return type
None

train_disc(*, expert_samples=None, gen_samples=None)
Perform a single discriminator update, optionally using provided samples.

Parameters

• expert_samples (Optional[Mapping]) – Transition samples from the expert in dictio-
nary form. If provided, must contain keys corresponding to every field of the Transitions
dataclass except “infos”. All corresponding values can be either NumPy arrays or Tensors.
Extra keys are ignored. Must contain self.demo_batch_size samples. If this argument is
not provided, then self.demo_batch_size expert samples from self.demo_data_loader are
used by default.

• gen_samples (Optional[Mapping]) – Transition samples from the generator pol-
icy in same dictionary form as expert_samples. If provided, must contain exactly
self.demo_batch_size samples. If not provided, then take len(expert_samples) samples
from the generator replay buffer.

Return type
Mapping[str, float]

Returns
Statistics for discriminator (e.g. loss, accuracy).

train_gen(total_timesteps=None, learn_kwargs=None)
Trains the generator to maximize the discriminator loss.

After the end of training populates the generator replay buffer (used in discriminator training) with
self.disc_batch_size transitions.

Parameters

• total_timesteps (Optional[int]) – The number of transitions to sample from
self.venv_train during training. By default, self.gen_train_timesteps.

• learn_kwargs (Optional[Mapping]) – kwargs for the Stable Baselines RLModel.learn()
method.

Return type
None
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venv: VecEnv

The original vectorized environment.

venv_train: VecEnv

Like self.venv, but wrapped with train reward unless in debug mode.

If debug_use_ground_truth=True was passed into the initializer then self.venv_train is the same as self.venv.

venv_wrapped: VecEnvWrapper

2.12 DAgger

DAgger (Dataset Aggregation) iteratively trains a policy using supervised learning on a dataset of observation-action
pairs from expert demonstrations (like behavioral cloning), runs the policy to gather observations, queries the expert
for good actions on those observations, and adds the newly labeled observations to the dataset. DAgger improves
on behavioral cloning by training on a dataset that better resembles the observations the trained policy is likely to
encounter, but it requires querying the expert online.

Note: DAgger paper: A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning

2.12.1 Example

Detailed example notebook: Train an Agent using the DAgger Algorithm

import tempfile
import numpy as np
import gym
from stable_baselines3 import PPO
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.vec_env import DummyVecEnv
from stable_baselines3.ppo import MlpPolicy

from imitation.algorithms import bc
from imitation.algorithms.dagger import SimpleDAggerTrainer

rng = np.random.default_rng(0)
env = gym.make("CartPole-v1")
expert = PPO(policy=MlpPolicy, env=env)
expert.learn(1000)
venv = DummyVecEnv([lambda: gym.make("CartPole-v1")])

bc_trainer = bc.BC(
observation_space=env.observation_space,
action_space=env.action_space,
rng=rng,

)
with tempfile.TemporaryDirectory(prefix="dagger_example_") as tmpdir:

print(tmpdir)
dagger_trainer = SimpleDAggerTrainer(

venv=venv,
(continues on next page)
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(continued from previous page)

scratch_dir=tmpdir,
expert_policy=expert,
bc_trainer=bc_trainer,
rng=rng,

)
dagger_trainer.train(2000)

reward, _ = evaluate_policy(dagger_trainer.policy, env, 10)
print("Reward:", reward)

2.12.2 API

class imitation.algorithms.dagger.InteractiveTrajectoryCollector(venv, get_robot_acts, beta,
save_dir, rng)

Bases: VecEnvWrapper

DAgger VecEnvWrapper for querying and saving expert actions.

Every call to .step(actions) accepts and saves expert actions to self.save_dir, but only forwards expert actions
to the wrapped VecEnv with probability self.beta. With probability 1 - self.beta, a “robot” action (i.e an action
from the imitation policy) is forwarded instead.

Demonstrations are saved as TrajectoryWithRew to self.save_dir at the end of every episode.

__init__(venv, get_robot_acts, beta, save_dir, rng)
Builds InteractiveTrajectoryCollector.

Parameters

• venv (VecEnv) – vectorized environment to sample trajectories from.

• get_robot_acts (Callable[[ndarray], ndarray]) – get robot actions that can be sub-
stituted for human actions. Takes a vector of observations as input & returns a vector of
actions.

• beta (float) – fraction of the time to use action given to .step() instead of robot action.
The choice of robot or human action is independently randomized for each individual Env
at every timestep.

• save_dir (Union[str, bytes, PathLike]) – directory to save collected trajectories in.

• rng (Generator) – random state for random number generation.

close()

Clean up the environment’s resources.

Return type
None

env_is_wrapped(wrapper_class, indices=None)
Check if environments are wrapped with a given wrapper.

Parameters

• method_name – The name of the environment method to invoke.

• indices (Union[None, int, Iterable[int]]) – Indices of envs whose method to call

• method_args – Any positional arguments to provide in the call
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• method_kwargs – Any keyword arguments to provide in the call

Return type
List[bool]

Returns
True if the env is wrapped, False otherwise, for each env queried.

env_method(method_name, *method_args, indices=None, **method_kwargs)
Call instance methods of vectorized environments.

Parameters

• method_name (str) – The name of the environment method to invoke.

• indices (Union[None, int, Iterable[int]]) – Indices of envs whose method to call

• method_args – Any positional arguments to provide in the call

• method_kwargs – Any keyword arguments to provide in the call

Return type
List[Any]

Returns
List of items returned by the environment’s method call

get_attr(attr_name, indices=None)
Return attribute from vectorized environment.

Parameters

• attr_name (str) – The name of the attribute whose value to return

• indices (Union[None, int, Iterable[int]]) – Indices of envs to get attribute from

Return type
List[Any]

Returns
List of values of ‘attr_name’ in all environments

get_images()

Return RGB images from each environment

Return type
Sequence[ndarray]

getattr_depth_check(name, already_found)
See base class.

Return type
str

Returns
name of module whose attribute is being shadowed, if any.

getattr_recursive(name)
Recursively check wrappers to find attribute.

Parameters
name (str) – name of attribute to look for

Return type
Any
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Returns
attribute

metadata = {'render.modes': ['human', 'rgb_array']}

render(mode='human')
Gym environment rendering

Parameters
mode (str) – the rendering type

Return type
Optional[ndarray]

reset()

Resets the environment.

Returns
first observation of a new trajectory.

Return type
obs

seed(seed=None)
Set the seed for the DAgger random number generator and wrapped VecEnv.

The DAgger RNG is used along with self.beta to determine whether the expert or robot action is forwarded
to the wrapped VecEnv.

Parameters
seed (Optional[int]) – The random seed. May be None for completely random seeding.

Return type
List[Optional[int]]

Returns
A list containing the seeds for each individual env. Note that all list elements may be None,
if the env does not return anything when seeded.

set_attr(attr_name, value, indices=None)
Set attribute inside vectorized environments.

Parameters

• attr_name (str) – The name of attribute to assign new value

• value (Any) – Value to assign to attr_name

• indices (Union[None, int, Iterable[int]]) – Indices of envs to assign value

Return type
None

Returns

step(actions)
Step the environments with the given action

Parameters
actions (ndarray) – the action

Return type
Tuple[Union[ndarray, Dict[str, ndarray], Tuple[ndarray, ...]], ndarray, ndarray,
List[Dict]]
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Returns
observation, reward, done, information

step_async(actions)
Steps with a 1 - beta chance of using self.get_robot_acts instead.

DAgger needs to be able to inject imitation policy actions randomly at some subset of time steps. This
method has a self.beta chance of keeping the actions passed in as an argument, and a 1 - self.beta chance
of forwarding actions generated by self.get_robot_acts instead. “robot” (i.e. imitation policy) action if
necessary.

At the end of every episode, a TrajectoryWithRew is saved to self.save_dir, where every saved action is the
expert action, regardless of whether the robot action was used during that timestep.

Parameters
actions (ndarray) – the _intended_ demonstrator/expert actions for the current state. This
will be executed with probability self.beta. Otherwise, a “robot” (typically a BC policy) action
will be sampled and executed instead via self.get_robot_act.

Return type
None

step_wait()

Returns observation, reward, etc after previous step_async() call.

Stores the transition, and saves trajectory as demo once complete.

Return type
Tuple[Union[ndarray, Dict[str, ndarray], Tuple[ndarray, ...]], ndarray, ndarray,
List[Dict]]

Returns
Observation, reward, dones (is terminal?) and info dict.

traj_accum: Optional[TrajectoryAccumulator]

property unwrapped: VecEnv

Return type
VecEnv

class imitation.algorithms.dagger.DAggerTrainer(*, venv, scratch_dir, rng, beta_schedule=None,
bc_trainer, custom_logger=None)

Bases: BaseImitationAlgorithm

DAgger training class with low-level API suitable for interactive human feedback.

In essence, this is just BC with some helpers for incrementally resuming training and interpolating between
demonstrator/learnt policies. Interaction proceeds in “rounds” in which the demonstrator first provides a fresh set
of demonstrations, and then an underlying BC is invoked to fine-tune the policy on the entire set of demonstrations
collected in all rounds so far. Demonstrations and policy/trainer checkpoints are stored in a directory with the
following structure:

scratch-dir-name/
checkpoint-001.pt
checkpoint-002.pt
...
checkpoint-XYZ.pt
checkpoint-latest.pt
demos/

(continues on next page)
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round-000/
demos_round_000_000.npz
demos_round_000_001.npz
...

round-001/
demos_round_001_000.npz
...

...
round-XYZ/

...

DEFAULT_N_EPOCHS: int = 4

The default number of BC training epochs in extend_and_update.

__init__(*, venv, scratch_dir, rng, beta_schedule=None, bc_trainer, custom_logger=None)
Builds DAggerTrainer.

Parameters

• venv (VecEnv) – Vectorized training environment.

• scratch_dir (Union[str, bytes, PathLike]) – Directory to use to store intermediate
training information (e.g. for resuming training).

• rng (Generator) – random state for random number generation.

• beta_schedule (Optional[Callable[[int], float]]) – Provides a value of beta (the
probability of taking expert action in any given state) at each round of training. If None,
then linear_beta_schedule will be used instead.

• bc_trainer (BC) – A BC instance used to train the underlying policy.

• custom_logger (Optional[HierarchicalLogger]) – Where to log to; if None (de-
fault), creates a new logger.

allow_variable_horizon: bool

If True, allow variable horizon trajectories; otherwise error if detected.

property batch_size: int

Return type
int

create_trajectory_collector()

Create trajectory collector to extend current round’s demonstration set.

Return type
InteractiveTrajectoryCollector

Returns
A collector configured with the appropriate beta, imitator policy, etc. for the current round.
Refer to the documentation for InteractiveTrajectoryCollector to see how to use this.

extend_and_update(bc_train_kwargs=None)
Extend internal batch of data and train BC.

Specifically, this method will load new transitions (if necessary), train the model for a while, and advance
the round counter. If there are no fresh demonstrations in the demonstration directory for the current round,
then this will raise a NeedsDemosException instead of training or advancing the round counter. In that case,
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the user should call .create_trajectory_collector() and use the returned InteractiveTrajectoryCollector to
produce a new set of demonstrations for the current interaction round.

Parameters
bc_train_kwargs (Optional[Mapping[str, Any]]) – Keyword arguments for calling
BC.train(). If the log_rollouts_venv key is not provided, then it is set to self.venv by de-
fault. If neither of the n_epochs and n_batches keys are provided, then n_epochs is set to
self.DEFAULT_N_EPOCHS.

Return type
int

Returns
New round number after advancing the round counter.

property logger: HierarchicalLogger

Returns logger for this object.

Return type
HierarchicalLogger

property policy: BasePolicy

Return type
BasePolicy

save_policy(policy_path)
Save the current policy only (and not the rest of the trainer).

Parameters
policy_path (Union[str, bytes, PathLike]) – path to save policy to.

Return type
None

save_trainer()

Create a snapshot of trainer in the scratch/working directory.

The created snapshot can be reloaded with reconstruct_trainer(). In addition to saving one copy of the
policy in the trainer snapshot, this method saves a second copy of the policy in its own file. Having a second
copy of the policy is convenient because it can be loaded on its own and passed to evaluation routines for
other algorithms.

Returns
a path to one of the created DAggerTrainer checkpoints. policy_path: a path to one of the
created DAggerTrainer policies.

Return type
checkpoint_path

class imitation.algorithms.dagger.SimpleDAggerTrainer(*, venv, scratch_dir, expert_policy, rng,
expert_trajs=None,
**dagger_trainer_kwargs)

Bases: DAggerTrainer

Simpler subclass of DAggerTrainer for training with synthetic feedback.

DEFAULT_N_EPOCHS: int = 4

The default number of BC training epochs in extend_and_update.
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__init__(*, venv, scratch_dir, expert_policy, rng, expert_trajs=None, **dagger_trainer_kwargs)
Builds SimpleDAggerTrainer.

Parameters

• venv (VecEnv) – Vectorized training environment. Note that when the robot action is
randomly injected (in accordance with beta_schedule argument), every individual envi-
ronment will get a robot action simultaneously for that timestep.

• scratch_dir (Union[str, bytes, PathLike]) – Directory to use to store intermediate
training information (e.g. for resuming training).

• expert_policy (BasePolicy) – The expert policy used to generate synthetic demonstra-
tions.

• rng (Generator) – Random state to use for the random number generator.

• expert_trajs (Optional[Sequence[Trajectory]]) – Optional starting dataset that is
inserted into the round 0 dataset.

• dagger_trainer_kwargs – Other keyword arguments passed to the superclass initializer
DAggerTrainer.__init__.

Raises
ValueError – The observation or action space does not match between venv and ex-
pert_policy.

allow_variable_horizon: bool

If True, allow variable horizon trajectories; otherwise error if detected.

property batch_size: int

Return type
int

create_trajectory_collector()

Create trajectory collector to extend current round’s demonstration set.

Return type
InteractiveTrajectoryCollector

Returns
A collector configured with the appropriate beta, imitator policy, etc. for the current round.
Refer to the documentation for InteractiveTrajectoryCollector to see how to use this.

extend_and_update(bc_train_kwargs=None)
Extend internal batch of data and train BC.

Specifically, this method will load new transitions (if necessary), train the model for a while, and advance
the round counter. If there are no fresh demonstrations in the demonstration directory for the current round,
then this will raise a NeedsDemosException instead of training or advancing the round counter. In that case,
the user should call .create_trajectory_collector() and use the returned InteractiveTrajectoryCollector to
produce a new set of demonstrations for the current interaction round.

Parameters
bc_train_kwargs (Optional[Mapping[str, Any]]) – Keyword arguments for calling
BC.train(). If the log_rollouts_venv key is not provided, then it is set to self.venv by de-
fault. If neither of the n_epochs and n_batches keys are provided, then n_epochs is set to
self.DEFAULT_N_EPOCHS.

Return type
int

2.12. DAgger 45



imitation

Returns
New round number after advancing the round counter.

property logger: HierarchicalLogger

Returns logger for this object.

Return type
HierarchicalLogger

property policy: BasePolicy

Return type
BasePolicy

save_policy(policy_path)
Save the current policy only (and not the rest of the trainer).

Parameters
policy_path (Union[str, bytes, PathLike]) – path to save policy to.

Return type
None

save_trainer()

Create a snapshot of trainer in the scratch/working directory.

The created snapshot can be reloaded with reconstruct_trainer(). In addition to saving one copy of the
policy in the trainer snapshot, this method saves a second copy of the policy in its own file. Having a second
copy of the policy is convenient because it can be loaded on its own and passed to evaluation routines for
other algorithms.

Returns
a path to one of the created DAggerTrainer checkpoints. policy_path: a path to one of the
created DAggerTrainer policies.

Return type
checkpoint_path

train(total_timesteps, *, rollout_round_min_episodes=3, rollout_round_min_timesteps=500,
bc_train_kwargs=None)

Train the DAgger agent.

The agent is trained in “rounds” where each round consists of a dataset aggregation step followed by BC
update step.

During a dataset aggregation step, self.expert_policy is used to perform rollouts in the environment but
there is a 1 - beta chance (beta is determined from the round number and self.beta_schedule) that the
DAgger agent’s action is used instead. Regardless of whether the DAgger agent’s action is used during the
rollout, the expert action and corresponding observation are always appended to the dataset. The number
of environment steps in the dataset aggregation stage is determined by the rollout_round_min* arguments.

During a BC update step, BC.train() is called to update the DAgger agent on all data collected so far.

Parameters

• total_timesteps (int) – The number of timesteps to train inside the environment. In
practice this is a lower bound, because the number of timesteps is rounded up to finish
the minimum number of episdoes or timesteps in the last DAgger training round, and the
environment timesteps are executed in multiples of self.venv.num_envs.

• rollout_round_min_episodes (int) – The number of episodes the must be completed
completed before a dataset aggregation step ends.
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• rollout_round_min_timesteps (int) – The number of environment timesteps that
must be completed before a dataset aggregation step ends. Also, that any round will al-
ways train for at least self.batch_size timesteps, because otherwise BC could fail to receive
any batches.

• bc_train_kwargs (Optional[dict]) – Keyword arguments for calling BC.train(). If
the log_rollouts_venv key is not provided, then it is set to self.venv by default. If
neither of the n_epochs and n_batches keys are provided, then n_epochs is set to
self.DEFAULT_N_EPOCHS.

Return type
None

2.13 Density-Based Reward Modeling

Density-based reward modeling is an inverse reinforcement learning (IRL) technique that assigns higher rewards to
states or state-action pairs that occur more frequently in an expert’s demonstrations. This variant utilizes kernel density
estimation to model the underlying distribution of expert demonstrations. It assigns rewards to states or state-action
pairs based on their estimated log-likelihood under the distribution of expert demonstrations.

The key intuition behind this method is to incentivize the agent to take actions that resemble the expert’s actions in
similar states.

While this approach is relatively simple, it does have several drawbacks:

• It assumes that the expert demonstrations are representative of the expert’s behavior, which may not always be
true.

• It does not provide an interpretable reward function.

• The kernel density estimation is not well-suited for high-dimensional state-action spaces.

2.13.1 Example

Detailed example notebook: Learning a Reward Function using Kernel Density

import pprint
import numpy as np

from stable_baselines3 import PPO
from stable_baselines3.common.policies import ActorCriticPolicy

from imitation.algorithms import density as db
from imitation.data import serialize
from imitation.util import util

rng = np.random.default_rng(0)

env = util.make_vec_env("Pendulum-v1", rng=rng, n_envs=2)
rollouts = serialize.load("../tests/testdata/expert_models/pendulum_0/rollouts/final.npz
→˓")

imitation_trainer = PPO(ActorCriticPolicy, env)
density_trainer = db.DensityAlgorithm(

(continues on next page)
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venv=env,
demonstrations=rollouts,
rl_algo=imitation_trainer,
rng=rng,

)
density_trainer.train()

def print_stats(density_trainer, n_trajectories):
stats = density_trainer.test_policy(n_trajectories=n_trajectories)
print("True reward function stats:")
pprint.pprint(stats)
stats_im = density_trainer.test_policy(true_reward=False, n_trajectories=n_

→˓trajectories)
print("Imitation reward function stats:")
pprint.pprint(stats_im)

print("Stats before training:")
print_stats(density_trainer, 1)

density_trainer.train_policy(100)

print("Stats after training:")
print_stats(density_trainer, 1)

2.13.2 API

class imitation.algorithms.density.DensityAlgorithm(*, demonstrations, venv, rng, den-
sity_type=DensityType.STATE_ACTION_DENSITY,
kernel='gaussian', kernel_bandwidth=0.5,
rl_algo=None, is_stationary=True,
standardise_inputs=True, custom_logger=None,
allow_variable_horizon=False)

Bases: DemonstrationAlgorithm

Learns a reward function based on density modeling.

Specifically, it constructs a non-parametric estimate of p(s), p(s,a), p(s,s’) and then computes a reward using the
log of these probabilities.

__init__(*, demonstrations, venv, rng, density_type=DensityType.STATE_ACTION_DENSITY,
kernel='gaussian', kernel_bandwidth=0.5, rl_algo=None, is_stationary=True,
standardise_inputs=True, custom_logger=None, allow_variable_horizon=False)

Builds DensityAlgorithm.

Parameters

• demonstrations (Union[Iterable[Trajectory], Iterable[Mapping[str,
Union[ndarray, Tensor]]], TransitionsMinimal, None]) – expert demonstration
trajectories.

• density_type (DensityType) – type of density to train on: single state, state-action
pairs, or state-state pairs.

• kernel (str) – kernel to use for density estimation with sklearn.KernelDensity.
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• kernel_bandwidth (float) – bandwidth of kernel. If standardise_inputs is true and you
are using a Gaussian kernel, then it probably makes sense to set this somewhere between
0.1 and 1.

• venv (VecEnv) – The environment to learn a reward model in. We don’t actually need any
environment interaction to fit the reward model, but we use this to extract the observation
and action space, and to train the RL algorithm rl_algo (if specified).

• rng (Generator) – random state for sampling from demonstrations.

• rl_algo (Optional[BaseAlgorithm]) – An RL algorithm to train on the resulting re-
ward model (optional).

• is_stationary (bool) – if True, share same density models for all timesteps; if False,
use a different density model for each timestep. A non-stationary model is particularly
likely to be useful when using STATE_DENSITY, to encourage agent to imitate entire
trajectories, not just a few states that have high frequency in the demonstration dataset. If
non-stationary, demonstrations must be trajectories, not transitions (which do not contain
timesteps).

• standardise_inputs (bool) – if True, then the inputs to the reward model will be stan-
dardised to have zero mean and unit variance over the demonstration trajectories. Other-
wise, inputs will be passed to the reward model with their ordinary scale.

• custom_logger (Optional[HierarchicalLogger]) – Where to log to; if None (de-
fault), creates a new logger.

• allow_variable_horizon (bool) – If False (default), algorithm will raise an exception if
it detects trajectories of different length during training. If True, overrides this safety check.
WARNING: variable horizon episodes leak information about the reward via termination
condition, and can seriously confound evaluation. Read https://imitation.readthedocs.io/
en/latest/guide/variable_horizon.html before overriding this.

allow_variable_horizon: bool

If True, allow variable horizon trajectories; otherwise error if detected.

buffering_wrapper: BufferingWrapper

density_type: DensityType

is_stationary: bool

kernel: str

kernel_bandwidth: float

property logger: HierarchicalLogger

Return type
HierarchicalLogger

property policy: BasePolicy

Returns a policy imitating the demonstration data.

Return type
BasePolicy

rl_algo: Optional[BaseAlgorithm]

2.13. Density-Based Reward Modeling 49

https://imitation.readthedocs.io/en/latest/guide/variable_horizon.html
https://imitation.readthedocs.io/en/latest/guide/variable_horizon.html


imitation

set_demonstrations(demonstrations)
Sets the demonstration data.

Return type
None

standardise: bool

test_policy(*, n_trajectories=10, true_reward=True)
Test current imitation policy on environment & give some rollout stats.

Parameters

• n_trajectories (int) – number of rolled-out trajectories.

• true_reward (bool) – should this use ground truth reward from underlying environment
(True), or imitation reward (False)?

Returns

rollout statistics collected by
imitation.utils.rollout.rollout_stats().

Return type
dict

train()

Fits the density model to demonstration data self.transitions.

Return type
None

train_policy(n_timesteps=1000000, **kwargs)
Train the imitation policy for a given number of timesteps.

Parameters

• n_timesteps (int) – number of timesteps to train the policy for.

• kwargs (dict) – extra arguments that will be passed to the learn() method of the imitation
RL model. Refer to Stable Baselines docs for details.

Return type
None

transitions: Dict[Optional[int], ndarray]

venv: VecEnv

venv_wrapped: RewardVecEnvWrapper

wrapper_callback: WrappedRewardCallback
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2.14 Maximum Causal Entropy Inverse Reinforcement Learning (MCE
IRL)

Implements Modeling Interaction via the Principle of Maximum Causal Entropy.

2.14.1 Example

Detailed example notebook: Learn a Reward Function using Maximum Conditional Entropy Inverse Reinforcement
Learning

from functools import partial

from seals import base_envs
from seals.diagnostics.cliff_world import CliffWorldEnv
import numpy as np

from stable_baselines3.common.vec_env import DummyVecEnv

from imitation.algorithms.mce_irl import (
MCEIRL,
mce_occupancy_measures,
mce_partition_fh,

)
from imitation.data import rollout
from imitation.rewards import reward_nets

rng = np.random.default_rng(0)

env_creator = partial(CliffWorldEnv, height=4, horizon=8, width=7, use_xy_obs=True)
env_single = env_creator()

state_env_creator = lambda: base_envs.ExposePOMDPStateWrapper(env_creator())

# This is just a vectorized environment because `generate_trajectories` expects one
state_venv = DummyVecEnv([state_env_creator] * 4)

_, _, pi = mce_partition_fh(env_single)

_, om = mce_occupancy_measures(env_single, pi=pi)

reward_net = reward_nets.BasicRewardNet(
env_single.observation_space,
env_single.action_space,
hid_sizes=[256],
use_action=False,
use_done=False,
use_next_state=False,

)

# training on analytically computed occupancy measures
mce_irl = MCEIRL(

(continues on next page)
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om,
env_single,
reward_net,
log_interval=250,
optimizer_kwargs={"lr": 0.01},
rng=rng,

)
occ_measure = mce_irl.train()

imitation_trajs = rollout.generate_trajectories(
policy=mce_irl.policy,
venv=state_venv,
sample_until=rollout.make_min_timesteps(5000),
rng=rng,

)
print("Imitation stats: ", rollout.rollout_stats(imitation_trajs))

2.14.2 API

class imitation.algorithms.mce_irl.MCEIRL(demonstrations, env, reward_net, rng, optimizer_cls=<class
'torch.optim.adam.Adam'>, optimizer_kwargs=None,
discount=1.0, linf_eps=0.001, grad_l2_eps=0.0001,
log_interval=100, *, custom_logger=None)

Bases: DemonstrationAlgorithm[TransitionsMinimal]

Tabular MCE IRL.

Reward is a function of observations, but policy is a function of states.

The “observations” effectively exist just to let MCE IRL learn a reward in a reasonable feature space, giving a
helpful inductive bias, e.g. that similar states have similar reward.

Since we are performing planning to compute the policy, there is no need for function approximation in the
policy.

__init__(demonstrations, env, reward_net, rng, optimizer_cls=<class 'torch.optim.adam.Adam'>,
optimizer_kwargs=None, discount=1.0, linf_eps=0.001, grad_l2_eps=0.0001, log_interval=100,
*, custom_logger=None)

Creates MCE IRL.

Parameters

• demonstrations (Union[ndarray, Iterable[Trajectory],
Iterable[Mapping[str, Union[ndarray, Tensor]]], TransitionsMinimal, None])
– Demonstrations from an expert (optional). Can be a sequence of trajectories, or
transitions, an iterable over mappings that represent a batch of transitions, or a state
occupancy measure. The demonstrations must have observations one-hot coded unless
demonstrations is a state-occupancy measure.

• env (TabularModelPOMDP) – a tabular MDP.

• rng (Generator) – random state used for sampling from policy.

• reward_net (RewardNet) – a neural network that computes rewards for the supplied ob-
servations.
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• optimizer_cls (Type[Optimizer]) – optimizer to use for supervised training.

• optimizer_kwargs (Optional[Mapping[str, Any]]) – keyword arguments for opti-
mizer construction.

• discount (float) – the discount factor to use when computing occupancy measure. If
not 1.0 (undiscounted), then demonstrations must either be a (discounted) state-occupancy
measure, or trajectories. Transitions are not allowed as we cannot discount them appropri-
ately without knowing the timestep they were drawn from.

• linf_eps (float) – optimisation terminates if the $l_{infty}$ distance between the
demonstrator’s state occupancy measure and the state occupancy measure for the current
reward falls below this value.

• grad_l2_eps (float) – optimisation also terminates if the $ell_2$ norm of the MCE IRL
gradient falls below this value.

• log_interval (Optional[int]) – how often to log current loss stats (using logging).
None to disable.

• custom_logger (Optional[HierarchicalLogger]) – Where to log to; if None (de-
fault), creates a new logger.

Raises
ValueError – if the env horizon is not finite (or an integer).

allow_variable_horizon: bool

If True, allow variable horizon trajectories; otherwise error if detected.

demo_state_om: Optional[ndarray]

property logger: HierarchicalLogger

Return type
HierarchicalLogger

property policy: BasePolicy

Returns a policy imitating the demonstration data.

Return type
BasePolicy

set_demonstrations(demonstrations)
Sets the demonstration data.

Changing the demonstration data on-demand can be useful for interactive algorithms like DAgger.

Parameters
demonstrations (Union[ndarray, Iterable[Trajectory], Iterable[Mapping[str,
Union[ndarray, Tensor]]], TransitionsMinimal]) – Either a Torch DataLoader, any
other iterator that yields dictionaries containing “obs” and “acts” Tensors or NumPy arrays,
TransitionKind instance, or a Sequence of Trajectory objects.

Return type
None

train(max_iter=1000)
Runs MCE IRL.

Parameters
max_iter (int) – The maximum number of iterations to train for. May terminate earlier if
self.linf_eps or self.grad_l2_eps thresholds are reached.
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Return type
ndarray

Returns
State occupancy measure for the final reward function. self.reward_net and self.optimizer will
be updated in-place during optimisation.

class imitation.algorithms.base.DemonstrationAlgorithm(*, demonstrations, custom_logger=None,
allow_variable_horizon=False)

Bases: BaseImitationAlgorithm , Generic[TransitionKind]

An algorithm that learns from demonstration: BC, IRL, etc.

__init__(*, demonstrations, custom_logger=None, allow_variable_horizon=False)
Creates an algorithm that learns from demonstrations.

Parameters

• demonstrations (Union[Iterable[Trajectory], Iterable[Mapping[str,
Union[ndarray, Tensor]]], TransitionsMinimal, None]) – Demonstrations from an
expert (optional). Transitions expressed directly as a types.TransitionsMinimal object, a
sequence of trajectories, or an iterable of transition batches (mappings from keywords to
arrays containing observations, etc).

• custom_logger (Optional[HierarchicalLogger]) – Where to log to; if None (de-
fault), creates a new logger.

• allow_variable_horizon (bool) – If False (default), algorithm will raise an exception if
it detects trajectories of different length during training. If True, overrides this safety check.
WARNING: variable horizon episodes leak information about the reward via termination
condition, and can seriously confound evaluation. Read https://imitation.readthedocs.io/
en/latest/getting-started/variable-horizon.html before overriding this.

allow_variable_horizon: bool

If True, allow variable horizon trajectories; otherwise error if detected.

abstract property policy: BasePolicy

Returns a policy imitating the demonstration data.

Return type
BasePolicy

abstract set_demonstrations(demonstrations)
Sets the demonstration data.

Changing the demonstration data on-demand can be useful for interactive algorithms like DAgger.

Parameters
demonstrations (Union[Iterable[Trajectory], Iterable[Mapping[str,
Union[ndarray, Tensor]]], TransitionsMinimal]) – Either a Torch DataLoader,
any other iterator that yields dictionaries containing “obs” and “acts” Tensors or NumPy
arrays, TransitionKind instance, or a Sequence of Trajectory objects.

Return type
None
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2.15 Preference Comparisons

The preference comparison algorithm learns a reward function from preferences between pairs of trajectories. The
comparisons are modeled as being generated from a Bradley-Terry (or Boltzmann rational) model, where the probability
of preferring trajectory A over B is proportional to the exponential of the difference between the return of trajectory A
minus B. In other words, the difference in returns forms a logit for a binary classification problem, and accordingly the
reward function is trained using a cross-entropy loss to predict the preference comparison.

Note:

• Our implementation is based on the Deep Reinforcement Learning from Human Preferences algorithm.

• An ensemble of reward networks can also be trained instead of a single network. The uncertainty in the preference
between the member networks can be used to actively select preference queries.

2.15.1 Example

Detailed example notebook: Learning a Reward Function using Preference Comparisons

import numpy as np

from stable_baselines3 import PPO
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.ppo import MlpPolicy

from imitation.algorithms import preference_comparisons
from imitation.policies.base import FeedForward32Policy, NormalizeFeaturesExtractor
from imitation.rewards.reward_nets import BasicRewardNet
from imitation.rewards.reward_wrapper import RewardVecEnvWrapper
from imitation.util.networks import RunningNorm
from imitation.util.util import make_vec_env

rng = np.random.default_rng(0)

venv = make_vec_env("Pendulum-v1", rng=rng)

reward_net = BasicRewardNet(
venv.observation_space, venv.action_space, normalize_input_layer=RunningNorm,

)

fragmenter = preference_comparisons.RandomFragmenter(warning_threshold=0, rng=rng)
gatherer = preference_comparisons.SyntheticGatherer(rng=rng)
preference_model = preference_comparisons.PreferenceModel(reward_net)
reward_trainer = preference_comparisons.BasicRewardTrainer(

preference_model=preference_model,
loss=preference_comparisons.CrossEntropyRewardLoss(),
epochs=3,
rng=rng,

)

agent = PPO(
(continues on next page)

2.15. Preference Comparisons 55

https://arxiv.org/pdf/1706.03741.pdf


imitation

(continued from previous page)

policy=FeedForward32Policy,
policy_kwargs=dict(

features_extractor_class=NormalizeFeaturesExtractor,
features_extractor_kwargs=dict(normalize_class=RunningNorm),

),
env=venv,
n_steps=2048 // venv.num_envs,

)

trajectory_generator = preference_comparisons.AgentTrainer(
algorithm=agent,
reward_fn=reward_net,
venv=venv,
exploration_frac=0.0,
rng=rng,

)

pref_comparisons = preference_comparisons.PreferenceComparisons(
trajectory_generator,
reward_net,
num_iterations=5,
fragmenter=fragmenter,
preference_gatherer=gatherer,
reward_trainer=reward_trainer,
initial_epoch_multiplier=1,

)
pref_comparisons.train(total_timesteps=5_000, total_comparisons=200)

reward, _ = evaluate_policy(agent.policy, venv, 10)
print("Reward:", reward)

2.15.2 API
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class imitation.algorithms.preference_comparisons.PreferenceComparisons(trajectory_generator,
reward_model,
num_iterations,
fragmenter=None,
prefer-
ence_gatherer=None,
reward_trainer=None,
compari-
son_queue_size=None,
fragment_length=100,
transi-
tion_oversampling=1,
ini-
tial_comparison_frac=0.1,
ini-
tial_epoch_multiplier=200.0,
custom_logger=None,
al-
low_variable_horizon=False,
rng=None,
query_schedule='hyperbolic')

Bases: BaseImitationAlgorithm

Main interface for reward learning using preference comparisons.

__init__(trajectory_generator, reward_model, num_iterations, fragmenter=None,
preference_gatherer=None, reward_trainer=None, comparison_queue_size=None,
fragment_length=100, transition_oversampling=1, initial_comparison_frac=0.1,
initial_epoch_multiplier=200.0, custom_logger=None, allow_variable_horizon=False, rng=None,
query_schedule='hyperbolic')

Initialize the preference comparison trainer.

The loggers of all subcomponents are overridden with the logger used by this class.

Parameters

• trajectory_generator (TrajectoryGenerator) – generates trajectories while op-
tionally training an RL agent on the learned reward function (can also be a sampler from a
static dataset of trajectories though).

• reward_model (RewardNet) – a RewardNet instance to be used for learning the reward

• num_iterations (int) – number of times to train the agent against the reward model and
then train the reward model against newly gathered preferences.

• fragmenter (Optional[Fragmenter]) – takes in a set of trajectories and returns pairs of
fragments for which preferences will be gathered. These fragments could be random, or
they could be selected more deliberately (active learning). Default is a random fragmenter.

• preference_gatherer (Optional[PreferenceGatherer]) – how to get preferences
between trajectory fragments. Default (and currently the only option) is to use synthetic
preferences based on ground-truth rewards. Human preferences could be implemented here
in the future.

• reward_trainer (Optional[RewardTrainer]) – trains the reward model based on pairs
of fragments and associated preferences. Default is to use the preference model and loss
function from DRLHP.
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• comparison_queue_size (Optional[int]) – the maximum number of comparisons to
keep in the queue for training the reward model. If None, the queue will grow without
bound as new comparisons are added.

• fragment_length (int) – number of timesteps per fragment that is used to elicit prefer-
ences

• transition_oversampling (float) – factor by which to oversample transitions before
creating fragments. Since fragments are sampled with replacement, this is usually chosen
> 1 to avoid having the same transition in too many fragments.

• initial_comparison_frac (float) – fraction of the total_comparisons argument to
train() that will be sampled before the rest of training begins (using a randomly initial-
ized agent). This can be used to pretrain the reward model before the agent is trained
on the learned reward, to help avoid irreversibly learning a bad policy from an untrained
reward. Note that there will often be some additional pretraining comparisons since com-
parisons_per_iteration won’t exactly divide the total number of comparisons. How many
such comparisons there are depends discontinuously on total_comparisons and compar-
isons_per_iteration.

• initial_epoch_multiplier (float) – before agent training begins, train the reward
model for this many more epochs than usual (on fragments sampled from a random agent).

• custom_logger (Optional[HierarchicalLogger]) – Where to log to; if None (de-
fault), creates a new logger.

• allow_variable_horizon (bool) – If False (default), algorithm will raise an exception if
it detects trajectories of different length during training. If True, overrides this safety check.
WARNING: variable horizon episodes leak information about the reward via termination
condition, and can seriously confound evaluation. Read https://imitation.readthedocs.io/
en/latest/guide/variable_horizon.html before overriding this.

• rng (Optional[Generator]) – random number generator to use for initializing subcom-
ponents such as fragmenter. Only used when default components are used; if you instantiate
your own fragmenter, preference gatherer, etc., you are responsible for seeding them!

• query_schedule (Union[str, Callable[[float], float]]) – one of (“constant”, “hy-
perbolic”, “inverse_quadratic”), or a function that takes in a float between 0 and 1 inclusive,
representing a fraction of the total number of timesteps elapsed up to some time T, and re-
turns a potentially unnormalized probability indicating the fraction of total_comparisons
that should be queried at that iteration. This function will be called num_iterations times
in __init__() with values from np.linspace(0, 1, num_iterations) as input. The outputs
will be normalized to sum to 1 and then used to apportion the comparisons among the
num_iterations iterations.

Raises
ValueError – if query_schedule is not a valid string or callable.

allow_variable_horizon: bool

If True, allow variable horizon trajectories; otherwise error if detected.

property logger: HierarchicalLogger

Return type
HierarchicalLogger

train(total_timesteps, total_comparisons, callback=None)
Train the reward model and the policy if applicable.

Parameters
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• total_timesteps (int) – number of environment interaction steps

• total_comparisons (int) – number of preferences to gather in total

• callback (Optional[Callable[[int], None]]) – callback functions called at the end of
each iteration

Return type
Mapping[str, Any]

Returns
A dictionary with final metrics such as loss and accuracy of the reward model.

class imitation.algorithms.base.BaseImitationAlgorithm(*, custom_logger=None,
allow_variable_horizon=False)

Bases: ABC

Base class for all imitation learning algorithms.

__init__(*, custom_logger=None, allow_variable_horizon=False)
Creates an imitation learning algorithm.

Parameters

• custom_logger (Optional[HierarchicalLogger]) – Where to log to; if None (de-
fault), creates a new logger.

• allow_variable_horizon (bool) – If False (default), algorithm will raise an exception if
it detects trajectories of different length during training. If True, overrides this safety check.
WARNING: variable horizon episodes leak information about the reward via termination
condition, and can seriously confound evaluation. Read https://imitation.readthedocs.io/
en/latest/getting-started/variable-horizon.html before overriding this.

allow_variable_horizon: bool

If True, allow variable horizon trajectories; otherwise error if detected.

property logger: HierarchicalLogger

Return type
HierarchicalLogger

download this notebook here

2.16 Train an Agent using Behavior Cloning

Behavior cloning is the most naive approach to imitation learning. We take the transitions of trajectories taken by some
expert and use them as training samples to train a new policy. The method has many drawbacks and often does not
work. However in this example, where we train an agent for the CartPole-v1 environment, it is feasible.

First we need some kind of expert in CartPole-v1 so we can sample some expert trajectories. For convenience we just
train one using the stable-baselines3 library.

import gym
from stable_baselines3 import PPO
from stable_baselines3.ppo import MlpPolicy

env = gym.make("CartPole-v1")
expert = PPO(

(continues on next page)
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policy=MlpPolicy,
env=env,
seed=0,
batch_size=64,
ent_coef=0.0,
learning_rate=0.0003,
n_epochs=10,
n_steps=64,

)
expert.learn(1000) # Note: set to 100000 to train a proficient expert

<stable_baselines3.ppo.ppo.PPO at 0x7f2184792fa0>

Let’s quickly check if the expert is any good. We usually should be able to reach a reward of 500, which is the maximum
achievable value.

from stable_baselines3.common.evaluation import evaluate_policy

reward, _ = evaluate_policy(expert, env, 10)
print(reward)

51.9

Now we can use the expert to sample some trajectories. We flatten them right away since we are only interested in the
individual transitions for behavior cloning. imitation comes with a number of helper functions that makes collecting
those transitions really easy. First we collect 50 episode rollouts, then we flatten them to just the transitions that we
need for training. Note that the rollout function requires a vectorized environment and needs the RolloutInfoWrapper
around each of the environments.

from imitation.data import rollout
from imitation.data.wrappers import RolloutInfoWrapper
from stable_baselines3.common.vec_env import DummyVecEnv
import numpy as np

rng = np.random.default_rng()
rollouts = rollout.rollout(

expert,
DummyVecEnv([lambda: RolloutInfoWrapper(env)]),
rollout.make_sample_until(min_timesteps=None, min_episodes=50),
rng=rng,

)
transitions = rollout.flatten_trajectories(rollouts)

Let’s have a quick look at what we just generated using those library functions:

print(
f"""The `rollout` function generated a list of {len(rollouts)} {type(rollouts[0])}.

After flattening, this list is turned into a {type(transitions)} object containing
→˓{len(transitions)} transitions.
The transitions object contains arrays for: {', '.join(transitions.__dict__.keys())}."
"""
)

60 Chapter 2. Citing imitation



imitation

The `rollout` function generated a list of 50 <class 'imitation.data.types.
→˓TrajectoryWithRew'>.
After flattening, this list is turned into a <class 'imitation.data.types.Transitions'>␣
→˓object containing 1779 transitions.
The transitions object contains arrays for: obs, acts, infos, next_obs, dones."

After we collected our transitions, it’s time to set up our behavior cloning algorithm.

from imitation.algorithms import bc

bc_trainer = bc.BC(
observation_space=env.observation_space,
action_space=env.action_space,
demonstrations=transitions,
rng=rng,

)

As you can see the untrained policy only gets poor rewards:

reward_before_training, _ = evaluate_policy(bc_trainer.policy, env, 10)
print(f"Reward before training: {reward_before_training}")

Reward before training: 23.7

After training, we can match the rewards of the expert (500):

bc_trainer.train(n_epochs=1)
reward_after_training, _ = evaluate_policy(bc_trainer.policy, env, 10)
print(f"Reward after training: {reward_after_training}")

---------------------------------
| batch_size | 32 |
| bc/ | |
| batch | 0 |
| ent_loss | -0.000693 |
| entropy | 0.693 |
| epoch | 0 |
| l2_loss | 0 |
| l2_norm | 72.5 |
| loss | 0.693 |
| neglogp | 0.693 |
| prob_true_act | 0.5 |
| samples_so_far | 32 |
---------------------------------
Reward after training: 65.7

download this notebook here
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2.17 Train an Agent using the DAgger Algorithm

The DAgger algorithm is an extension of behavior cloning. In behavior cloning, the training trajectories are recorded
directly from an expert. In DAgger, the learner generates the trajectories but an expert corrects the actions with the
optimal actions in each of the visited states. This ensures that the state distribution of the training data matches that of
the learner’s current policy.

First we need an expert to learn from:

import gym
from stable_baselines3 import PPO
from stable_baselines3.ppo import MlpPolicy

env = gym.make("CartPole-v1")
expert = PPO(

policy=MlpPolicy,
env=env,
seed=0,
batch_size=64,
ent_coef=0.0,
learning_rate=0.0003,
n_epochs=10,
n_steps=64,

)
expert.learn(1000) # Note: set to 100000 to train a proficient expert

<stable_baselines3.ppo.ppo.PPO at 0x7fa214199e50>

Then we can construct a DAgger trainer und use it to train the policy on the cartpole environment.

import tempfile
import gym
import numpy as np
from stable_baselines3.common.vec_env import DummyVecEnv

from imitation.algorithms import bc
from imitation.algorithms.dagger import SimpleDAggerTrainer

venv = DummyVecEnv([lambda: gym.make("CartPole-v1")])

bc_trainer = bc.BC(
observation_space=env.observation_space,
action_space=env.action_space,
rng=np.random.default_rng(),

)

with tempfile.TemporaryDirectory(prefix="dagger_example_") as tmpdir:
print(tmpdir)
dagger_trainer = SimpleDAggerTrainer(

venv=venv,
scratch_dir=tmpdir,
expert_policy=expert,

(continues on next page)
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bc_trainer=bc_trainer,
rng=np.random.default_rng(),

)

dagger_trainer.train(2000)

/tmp/dagger_example_twcgrzsh
---------------------------------
| batch_size | 32 |
| bc/ | |
| batch | 0 |
| ent_loss | -0.000693 |
| entropy | 0.693 |
| epoch | 0 |
| l2_loss | 0 |
| l2_norm | 72.5 |
| loss | 0.693 |
| neglogp | 0.693 |
| prob_true_act | 0.5 |
| samples_so_far | 32 |
| rollout/ | |
| return_max | 47 |
| return_mean | 28.8 |
| return_min | 15 |
| return_std | 11.3 |
---------------------------------
---------------------------------
| batch_size | 32 |
| bc/ | |
| batch | 0 |
| ent_loss | -0.000557 |
| entropy | 0.557 |
| epoch | 0 |
| l2_loss | 0 |
| l2_norm | 78.8 |
| loss | 0.344 |
| neglogp | 0.345 |
| prob_true_act | 0.72 |
| samples_so_far | 32 |
| rollout/ | |
| return_max | 59 |
| return_mean | 49.2 |
| return_min | 38 |
| return_std | 7.7 |
---------------------------------
---------------------------------
| batch_size | 32 |
| bc/ | |
| batch | 0 |
| ent_loss | -0.000157 |
| entropy | 0.157 |
| epoch | 0 |

(continues on next page)
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| l2_loss | 0 |
| l2_norm | 95.6 |
| loss | 0.0713 |
| neglogp | 0.0715 |
| prob_true_act | 0.939 |
| samples_so_far | 32 |
| rollout/ | |
| return_max | 57 |
| return_mean | 45.4 |
| return_min | 36 |
| return_std | 6.83 |
---------------------------------
---------------------------------
| batch_size | 32 |
| bc/ | |
| batch | 0 |
| ent_loss | -9.16e-05 |
| entropy | 0.0916 |
| epoch | 0 |
| l2_loss | 0 |
| l2_norm | 109 |
| loss | 0.0362 |
| neglogp | 0.0363 |
| prob_true_act | 0.968 |
| samples_so_far | 32 |
| rollout/ | |
| return_max | 67 |
| return_mean | 50.4 |
| return_min | 40 |
| return_std | 10.4 |
---------------------------------

Finally, the evaluation shows, that we actually trained a policy that solves the environment (500 is the max reward).

from stable_baselines3.common.evaluation import evaluate_policy

reward, _ = evaluate_policy(dagger_trainer.policy, env, 10)
print(reward)

52.3

download this notebook here
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2.18 Train an Agent using Generative Adversarial Imitation Learning

The idea of generative adversarial imitation learning is to train a discriminator network to distinguish between expert
trajectories and learner trajectories. The learner is trained using a traditional reinforcement learning algorithm such as
PPO and is rewarded for trajectories that make the discriminator think that it was an expert trajectory.

As usual, we first need an expert. Note that we now use a variant of the CartPole environment from the seals package,
which has fixed episode durations. Read more about why we do this here.

import gym
from stable_baselines3 import PPO
from stable_baselines3.ppo import MlpPolicy
import seals # needed to load environments

env = gym.make("seals/CartPole-v0")
expert = PPO(

policy=MlpPolicy,
env=env,
seed=0,
batch_size=64,
ent_coef=0.0,
learning_rate=0.0003,
n_epochs=10,
n_steps=64,

)
expert.learn(1000) # Note: set to 100000 to train a proficient expert

---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
File ~/checkouts/readthedocs.org/user_builds/imitation/envs/stable/lib/python3.8/site-
→˓packages/gym/envs/registration.py:158, in EnvRegistry.spec(self, path)

157 try:
--> 158 return self.env_specs[id]

159 except KeyError:
160 # Parse the env name and check to see if it matches the non-version
161 # part of a valid env (could also check the exact number here)

KeyError: 'seals/CartPole-v0'

During handling of the above exception, another exception occurred:

DeprecatedEnv Traceback (most recent call last)
Cell In[1], line 6

3 from stable_baselines3.ppo import MlpPolicy
4 import seals # needed to load environments

----> 6 env = gym.make("seals/CartPole-v0")
7 expert = PPO(
8 policy=MlpPolicy,
9 env=env,

(...)
15 n_steps=64,
16 )
17 expert.learn(1000) # Note: set to 100000 to train a proficient expert

(continues on next page)
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File ~/checkouts/readthedocs.org/user_builds/imitation/envs/stable/lib/python3.8/site-
→˓packages/gym/envs/registration.py:235, in make(id, **kwargs)

234 def make(id, **kwargs):
--> 235 return registry.make(id, **kwargs)

File ~/checkouts/readthedocs.org/user_builds/imitation/envs/stable/lib/python3.8/site-
→˓packages/gym/envs/registration.py:128, in EnvRegistry.make(self, path, **kwargs)

126 else:
127 logger.info("Making new env: %s", path)

--> 128 spec = self.spec(path)
129 env = spec.make(**kwargs)
130 return env

File ~/checkouts/readthedocs.org/user_builds/imitation/envs/stable/lib/python3.8/site-
→˓packages/gym/envs/registration.py:185, in EnvRegistry.spec(self, path)

176 toytext_envs = [
177 "KellyCoinflip",
178 "KellyCoinflipGeneralized",
(...)
182 "HotterColder",
183 ]
184 if matching_envs:

--> 185 raise error.DeprecatedEnv(
186 "Env {} not found (valid versions include {})".format(
187 id, matching_envs
188 )
189 )
190 elif env_name in algorithmic_envs:
191 raise error.UnregisteredEnv(
192 "Algorithmic environment {} has been moved out of Gym. Install it via␣

→˓`pip install gym-algorithmic` and add `import gym_algorithmic` before using it.".
→˓format(

193 id
194 )
195 )

DeprecatedEnv: Env seals/CartPole-v0 not found (valid versions include ['CartPole-v0',
→˓'CartPole-v1'])

We generate some expert trajectories, that the discriminator needs to distinguish from the learner’s trajectories.

from imitation.data import rollout
from imitation.data.wrappers import RolloutInfoWrapper
from imitation.util.util import make_vec_env
from stable_baselines3.common.vec_env import DummyVecEnv
import numpy as np

rng = np.random.default_rng()
rollouts = rollout.rollout(

expert,
make_vec_env(

(continues on next page)
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"seals/CartPole-v0",
n_envs=5,
post_wrappers=[lambda env, _: RolloutInfoWrapper(env)],
rng=rng,

),
rollout.make_sample_until(min_timesteps=None, min_episodes=60),
rng=rng,

)

Now we are ready to set up our GAIL trainer. Note, that the reward_net is actually the network of the discriminator.
We evaluate the learner before and after training so we can see if it made any progress.

from imitation.algorithms.adversarial.gail import GAIL
from imitation.rewards.reward_nets import BasicRewardNet
from imitation.util.networks import RunningNorm
from imitation.util.util import make_vec_env
from stable_baselines3 import PPO
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.vec_env import DummyVecEnv

import gym

venv = make_vec_env("seals/CartPole-v0", n_envs=8, rng=rng)
learner = PPO(

env=venv,
policy=MlpPolicy,
batch_size=64,
ent_coef=0.0,
learning_rate=0.0003,
n_epochs=10,

)
reward_net = BasicRewardNet(

venv.observation_space, venv.action_space, normalize_input_layer=RunningNorm
)
gail_trainer = GAIL(

demonstrations=rollouts,
demo_batch_size=1024,
gen_replay_buffer_capacity=2048,
n_disc_updates_per_round=4,
venv=venv,
gen_algo=learner,
reward_net=reward_net,

)

learner_rewards_before_training, _ = evaluate_policy(
learner, venv, 100, return_episode_rewards=True

)
gail_trainer.train(20000) # Note: set to 300000 for better results
learner_rewards_after_training, _ = evaluate_policy(

learner, venv, 100, return_episode_rewards=True
)
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When we look at the histograms of rewards before and after learning, we can see that the learner is not perfect yet, but
it made some progress at least. If not, just re-run the above cell.

import matplotlib.pyplot as plt
import numpy as np

print(np.mean(learner_rewards_after_training))
print(np.mean(learner_rewards_before_training))

plt.hist(
[learner_rewards_before_training, learner_rewards_after_training],
label=["untrained", "trained"],

)
plt.legend()
plt.show()

download this notebook here

2.19 Train an Agent using Adversarial Inverse Reinforcement Learn-
ing

As usual, we first need an expert. Note that we now use a variant of the CartPole environment from the seals package,
which has fixed episode durations. Read more about why we do this here.

import gym
from stable_baselines3 import PPO
from stable_baselines3.ppo import MlpPolicy
import seals # needed to load environments

env = gym.make("seals/CartPole-v0")
expert = PPO(

policy=MlpPolicy,
env=env,
seed=0,
batch_size=64,
ent_coef=0.0,
learning_rate=0.0003,
n_epochs=10,
n_steps=64,

)
expert.learn(1000) # Note: set to 100000 to train a proficient expert

---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
File ~/checkouts/readthedocs.org/user_builds/imitation/envs/stable/lib/python3.8/site-
→˓packages/gym/envs/registration.py:158, in EnvRegistry.spec(self, path)

157 try:
--> 158 return self.env_specs[id]

159 except KeyError:
160 # Parse the env name and check to see if it matches the non-version
161 # part of a valid env (could also check the exact number here)

(continues on next page)
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KeyError: 'seals/CartPole-v0'

During handling of the above exception, another exception occurred:

DeprecatedEnv Traceback (most recent call last)
Cell In[1], line 6

3 from stable_baselines3.ppo import MlpPolicy
4 import seals # needed to load environments

----> 6 env = gym.make("seals/CartPole-v0")
7 expert = PPO(
8 policy=MlpPolicy,
9 env=env,

(...)
15 n_steps=64,
16 )
17 expert.learn(1000) # Note: set to 100000 to train a proficient expert

File ~/checkouts/readthedocs.org/user_builds/imitation/envs/stable/lib/python3.8/site-
→˓packages/gym/envs/registration.py:235, in make(id, **kwargs)

234 def make(id, **kwargs):
--> 235 return registry.make(id, **kwargs)

File ~/checkouts/readthedocs.org/user_builds/imitation/envs/stable/lib/python3.8/site-
→˓packages/gym/envs/registration.py:128, in EnvRegistry.make(self, path, **kwargs)

126 else:
127 logger.info("Making new env: %s", path)

--> 128 spec = self.spec(path)
129 env = spec.make(**kwargs)
130 return env

File ~/checkouts/readthedocs.org/user_builds/imitation/envs/stable/lib/python3.8/site-
→˓packages/gym/envs/registration.py:185, in EnvRegistry.spec(self, path)

176 toytext_envs = [
177 "KellyCoinflip",
178 "KellyCoinflipGeneralized",
(...)
182 "HotterColder",
183 ]
184 if matching_envs:

--> 185 raise error.DeprecatedEnv(
186 "Env {} not found (valid versions include {})".format(
187 id, matching_envs
188 )
189 )
190 elif env_name in algorithmic_envs:
191 raise error.UnregisteredEnv(
192 "Algorithmic environment {} has been moved out of Gym. Install it via␣

→˓`pip install gym-algorithmic` and add `import gym_algorithmic` before using it.".
→˓format(

193 id
194 )

(continues on next page)
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195 )

DeprecatedEnv: Env seals/CartPole-v0 not found (valid versions include ['CartPole-v0',
→˓'CartPole-v1'])

We generate some expert trajectories, that the discriminator needs to distinguish from the learner’s trajectories.

from imitation.data import rollout
from imitation.data.wrappers import RolloutInfoWrapper
from imitation.util.util import make_vec_env
from stable_baselines3.common.vec_env import DummyVecEnv
import numpy as np

rng = np.random.default_rng()
rollouts = rollout.rollout(

expert,
make_vec_env(

"seals/CartPole-v0",
n_envs=5,
post_wrappers=[lambda env, _: RolloutInfoWrapper(env)],
rng=rng,

),
rollout.make_sample_until(min_timesteps=None, min_episodes=60),
rng=rng,

)

Now we are ready to set up our AIRL trainer. Note, that the reward_net is actually the network of the discriminator.
We evaluate the learner before and after training so we can see if it made any progress.

from imitation.algorithms.adversarial.airl import AIRL
from imitation.rewards.reward_nets import BasicShapedRewardNet
from imitation.util.networks import RunningNorm
from imitation.util.util import make_vec_env
from stable_baselines3 import PPO
from stable_baselines3.common.evaluation import evaluate_policy

import gym
import seals

venv = make_vec_env("seals/CartPole-v0", n_envs=8, rng=rng)
learner = PPO(

env=venv,
policy=MlpPolicy,
batch_size=64,
ent_coef=0.0,
learning_rate=0.0003,
n_epochs=10,

)
reward_net = BasicShapedRewardNet(

venv.observation_space, venv.action_space, normalize_input_layer=RunningNorm
)

(continues on next page)
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airl_trainer = AIRL(
demonstrations=rollouts,
demo_batch_size=1024,
gen_replay_buffer_capacity=2048,
n_disc_updates_per_round=4,
venv=venv,
gen_algo=learner,
reward_net=reward_net,

)

learner_rewards_before_training, _ = evaluate_policy(
learner, venv, 100, return_episode_rewards=True

)
airl_trainer.train(20000) # Note: set to 300000 for better results
learner_rewards_after_training, _ = evaluate_policy(

learner, venv, 100, return_episode_rewards=True
)

When we look at the histograms of rewards before and after learning, we can see that the learner is not perfect yet, but
it made some progress at least. If not, just re-run the above cell.

import matplotlib.pyplot as plt
import numpy as np

print(np.mean(learner_rewards_after_training))
print(np.mean(learner_rewards_before_training))

plt.hist(
[learner_rewards_before_training, learner_rewards_after_training],
label=["untrained", "trained"],

)
plt.legend()
plt.show()

download this notebook here

2.20 Learning a Reward Function using Preference Comparisons

The preference comparisons algorithm learns a reward function by comparing trajectory segments to each other.

To set up the preference comparisons algorithm, we first need to set up a lot of its internals beforehand:

import random
from imitation.algorithms import preference_comparisons
from imitation.rewards.reward_nets import BasicRewardNet
from imitation.util.networks import RunningNorm
from imitation.util.util import make_vec_env
from imitation.policies.base import FeedForward32Policy, NormalizeFeaturesExtractor
import gym
from stable_baselines3 import PPO
import numpy as np

(continues on next page)
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rng = np.random.default_rng(0)

venv = make_vec_env("Pendulum-v1", rng=rng)

reward_net = BasicRewardNet(
venv.observation_space, venv.action_space, normalize_input_layer=RunningNorm

)

fragmenter = preference_comparisons.RandomFragmenter(
warning_threshold=0,
rng=rng,

)
gatherer = preference_comparisons.SyntheticGatherer(rng=rng)
preference_model = preference_comparisons.PreferenceModel(reward_net)
reward_trainer = preference_comparisons.BasicRewardTrainer(

preference_model=preference_model,
loss=preference_comparisons.CrossEntropyRewardLoss(),
epochs=3,
rng=rng,

)

agent = PPO(
policy=FeedForward32Policy,
policy_kwargs=dict(

features_extractor_class=NormalizeFeaturesExtractor,
features_extractor_kwargs=dict(normalize_class=RunningNorm),

),
env=venv,
seed=0,
n_steps=2048 // venv.num_envs,
batch_size=64,
ent_coef=0.0,
learning_rate=0.0003,
n_epochs=10,

)

trajectory_generator = preference_comparisons.AgentTrainer(
algorithm=agent,
reward_fn=reward_net,
venv=venv,
exploration_frac=0.0,
rng=rng,

)

pref_comparisons = preference_comparisons.PreferenceComparisons(
trajectory_generator,
reward_net,
num_iterations=5,
fragmenter=fragmenter,
preference_gatherer=gatherer,
reward_trainer=reward_trainer,

(continues on next page)
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fragment_length=100,
transition_oversampling=1,
initial_comparison_frac=0.1,
allow_variable_horizon=False,
initial_epoch_multiplier=1,

)

Then we can start training the reward model. Note that we need to specify the total timesteps that the agent should be
trained and how many fragment comparisons should be made.

pref_comparisons.train(
total_timesteps=5_000, # For good performance this should be 1_000_000
total_comparisons=200, # For good performance this should be 5_000

)

Query schedule: [20, 51, 41, 34, 29, 25]
Collecting 40 fragments (4000 transitions)
Requested 4000 transitions but only 0 in buffer. Sampling 4000 additional transitions.
Creating fragment pairs
Gathering preferences
Dataset now contains 20 comparisons
Training agent for 1000 timesteps
----------------------------------------------------
| raw/ | |
| agent/rollout/ep_len_mean | 200 |
| agent/rollout/ep_rew_mean | -1.32e+03 |
| agent/rollout/ep_rew_wrapped_mean | 70.9 |
| agent/time/fps | 4965 |
| agent/time/iterations | 1 |
| agent/time/time_elapsed | 0 |
| agent/time/total_timesteps | 2048 |
----------------------------------------------------
------------------------------------------------------
| mean/ | |
| agent/rollout/ep_len_mean | 200 |
| agent/rollout/ep_rew_mean | -1.32e+03 |
| agent/rollout/ep_rew_wrapped_mean | 70.9 |
| agent/time/fps | 4.96e+03 |
| agent/time/iterations | 1 |
| agent/time/time_elapsed | 0 |
| agent/time/total_timesteps | 2.05e+03 |
| agent/train/approx_kl | 0.00522 |
| agent/train/clip_fraction | 0.033 |
| agent/train/clip_range | 0.2 |
| agent/train/entropy_loss | -1.42 |
| agent/train/explained_variance | -0.0565 |
| agent/train/learning_rate | 0.0003 |
| agent/train/loss | 0.538 |
| agent/train/n_updates | 10 |
| agent/train/policy_gradient_loss | -0.00434 |
| agent/train/std | 1 |
| agent/train/value_loss | 6.93 |

(continues on next page)
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| preferences/entropy | 0.00589 |
| reward/epoch-0/train/accuracy | 0.7 |
| reward/epoch-0/train/gt_reward_loss | 0.00125 |
| reward/epoch-0/train/loss | 0.663 |
| reward/epoch-1/train/accuracy | 0.75 |
| reward/epoch-1/train/gt_reward_loss | 0.00125 |
| reward/epoch-1/train/loss | 0.551 |
| reward/epoch-2/train/accuracy | 0.9 |
| reward/epoch-2/train/gt_reward_loss | 0.00125 |
| reward/epoch-2/train/loss | 0.416 |
| reward/ | |
| final/train/accuracy | 0.9 |
| final/train/gt_reward_loss | 0.00125 |
| final/train/loss | 0.416 |
------------------------------------------------------
Collecting 102 fragments (10200 transitions)
Requested 10200 transitions but only 1600 in buffer. Sampling 8600 additional␣
→˓transitions.
Creating fragment pairs
Gathering preferences
Dataset now contains 71 comparisons
Training agent for 1000 timesteps
-----------------------------------------------------
| raw/ | |
| agent/rollout/ep_len_mean | 200 |
| agent/rollout/ep_rew_mean | -1.32e+03 |
| agent/rollout/ep_rew_wrapped_mean | 54.5 |
| agent/time/fps | 4935 |
| agent/time/iterations | 1 |
| agent/time/time_elapsed | 0 |
| agent/time/total_timesteps | 4096 |
| agent/train/approx_kl | 0.00522125 |
| agent/train/clip_fraction | 0.033 |
| agent/train/clip_range | 0.2 |
| agent/train/entropy_loss | -1.42 |
| agent/train/explained_variance | -0.0565 |
| agent/train/learning_rate | 0.0003 |
| agent/train/loss | 0.538 |
| agent/train/n_updates | 10 |
| agent/train/policy_gradient_loss | -0.00434 |
| agent/train/std | 1 |
| agent/train/value_loss | 6.93 |
-----------------------------------------------------
------------------------------------------------------
| mean/ | |
| agent/rollout/ep_len_mean | 200 |
| agent/rollout/ep_rew_mean | -1.32e+03 |
| agent/rollout/ep_rew_wrapped_mean | 54.5 |
| agent/time/fps | 4.94e+03 |
| agent/time/iterations | 1 |
| agent/time/time_elapsed | 0 |
| agent/time/total_timesteps | 4.1e+03 |
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| agent/train/approx_kl | 0.00491 |
| agent/train/clip_fraction | 0.0267 |
| agent/train/clip_range | 0.2 |
| agent/train/entropy_loss | -1.42 |
| agent/train/explained_variance | -0.0464 |
| agent/train/learning_rate | 0.0003 |
| agent/train/loss | 0.743 |
| agent/train/n_updates | 20 |
| agent/train/policy_gradient_loss | -0.00231 |
| agent/train/std | 1 |
| agent/train/value_loss | 2.25 |
| preferences/entropy | 0.022 |
| reward/epoch-0/train/accuracy | 0.811 |
| reward/epoch-0/train/gt_reward_loss | 0.00811 |
| reward/epoch-0/train/loss | 0.339 |
| reward/epoch-1/train/accuracy | 0.9 |
| reward/epoch-1/train/gt_reward_loss | 0.0081 |
| reward/epoch-1/train/loss | 0.194 |
| reward/epoch-2/train/accuracy | 0.948 |
| reward/epoch-2/train/gt_reward_loss | 0.0081 |
| reward/epoch-2/train/loss | 0.102 |
| reward/ | |
| final/train/accuracy | 0.948 |
| final/train/gt_reward_loss | 0.0081 |
| final/train/loss | 0.102 |
------------------------------------------------------
Collecting 82 fragments (8200 transitions)
Requested 8200 transitions but only 1600 in buffer. Sampling 6600 additional transitions.
Creating fragment pairs
Gathering preferences
Dataset now contains 112 comparisons
Training agent for 1000 timesteps
------------------------------------------------------
| raw/ | |
| agent/rollout/ep_len_mean | 200 |
| agent/rollout/ep_rew_mean | -1.28e+03 |
| agent/rollout/ep_rew_wrapped_mean | 46.4 |
| agent/time/fps | 4954 |
| agent/time/iterations | 1 |
| agent/time/time_elapsed | 0 |
| agent/time/total_timesteps | 6144 |
| agent/train/approx_kl | 0.004912718 |
| agent/train/clip_fraction | 0.0267 |
| agent/train/clip_range | 0.2 |
| agent/train/entropy_loss | -1.42 |
| agent/train/explained_variance | -0.0464 |
| agent/train/learning_rate | 0.0003 |
| agent/train/loss | 0.743 |
| agent/train/n_updates | 20 |
| agent/train/policy_gradient_loss | -0.00231 |
| agent/train/std | 1 |
| agent/train/value_loss | 2.25 |
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------------------------------------------------------
------------------------------------------------------
| mean/ | |
| agent/rollout/ep_len_mean | 200 |
| agent/rollout/ep_rew_mean | -1.28e+03 |
| agent/rollout/ep_rew_wrapped_mean | 46.4 |
| agent/time/fps | 4.95e+03 |
| agent/time/iterations | 1 |
| agent/time/time_elapsed | 0 |
| agent/time/total_timesteps | 6.14e+03 |
| agent/train/approx_kl | 0.0017 |
| agent/train/clip_fraction | 0.00176 |
| agent/train/clip_range | 0.2 |
| agent/train/entropy_loss | -1.42 |
| agent/train/explained_variance | 0.214 |
| agent/train/learning_rate | 0.0003 |
| agent/train/loss | 1.94 |
| agent/train/n_updates | 30 |
| agent/train/policy_gradient_loss | -0.000454 |
| agent/train/std | 0.991 |
| agent/train/value_loss | 3.72 |
| preferences/entropy | 1.11e-06 |
| reward/epoch-0/train/accuracy | 0.969 |
| reward/epoch-0/train/gt_reward_loss | 0.00607 |
| reward/epoch-0/train/loss | 0.105 |
| reward/epoch-1/train/accuracy | 0.969 |
| reward/epoch-1/train/gt_reward_loss | 0.0106 |
| reward/epoch-1/train/loss | 0.0978 |
| reward/epoch-2/train/accuracy | 0.977 |
| reward/epoch-2/train/gt_reward_loss | 0.00607 |
| reward/epoch-2/train/loss | 0.0845 |
| reward/ | |
| final/train/accuracy | 0.977 |
| final/train/gt_reward_loss | 0.00607 |
| final/train/loss | 0.0845 |
------------------------------------------------------
Collecting 68 fragments (6800 transitions)
Requested 6800 transitions but only 1600 in buffer. Sampling 5200 additional transitions.
Creating fragment pairs
Gathering preferences
Dataset now contains 146 comparisons
Training agent for 1000 timesteps
-------------------------------------------------------
| raw/ | |
| agent/rollout/ep_len_mean | 200 |
| agent/rollout/ep_rew_mean | -1.29e+03 |
| agent/rollout/ep_rew_wrapped_mean | 45 |
| agent/time/fps | 4998 |
| agent/time/iterations | 1 |
| agent/time/time_elapsed | 0 |
| agent/time/total_timesteps | 8192 |
| agent/train/approx_kl | 0.0016984465 |

(continues on next page)
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| agent/train/clip_fraction | 0.00176 |
| agent/train/clip_range | 0.2 |
| agent/train/entropy_loss | -1.42 |
| agent/train/explained_variance | 0.214 |
| agent/train/learning_rate | 0.0003 |
| agent/train/loss | 1.94 |
| agent/train/n_updates | 30 |
| agent/train/policy_gradient_loss | -0.000454 |
| agent/train/std | 0.991 |
| agent/train/value_loss | 3.72 |
-------------------------------------------------------
------------------------------------------------------
| mean/ | |
| agent/rollout/ep_len_mean | 200 |
| agent/rollout/ep_rew_mean | -1.29e+03 |
| agent/rollout/ep_rew_wrapped_mean | 45 |
| agent/time/fps | 5e+03 |
| agent/time/iterations | 1 |
| agent/time/time_elapsed | 0 |
| agent/time/total_timesteps | 8.19e+03 |
| agent/train/approx_kl | 0.00147 |
| agent/train/clip_fraction | 0.00308 |
| agent/train/clip_range | 0.2 |
| agent/train/entropy_loss | -1.4 |
| agent/train/explained_variance | 0.267 |
| agent/train/learning_rate | 0.0003 |
| agent/train/loss | 2.95 |
| agent/train/n_updates | 40 |
| agent/train/policy_gradient_loss | -0.000462 |
| agent/train/std | 0.973 |
| agent/train/value_loss | 4.44 |
| preferences/entropy | 0.000701 |
| reward/epoch-0/train/accuracy | 0.975 |
| reward/epoch-0/train/gt_reward_loss | 0.00488 |
| reward/epoch-0/train/loss | 0.0804 |
| reward/epoch-1/train/accuracy | 0.97 |
| reward/epoch-1/train/gt_reward_loss | 0.0077 |
| reward/epoch-1/train/loss | 0.0931 |
| reward/epoch-2/train/accuracy | 0.975 |
| reward/epoch-2/train/gt_reward_loss | 0.00488 |
| reward/epoch-2/train/loss | 0.0702 |
| reward/ | |
| final/train/accuracy | 0.975 |
| final/train/gt_reward_loss | 0.00488 |
| final/train/loss | 0.0702 |
------------------------------------------------------
Collecting 58 fragments (5800 transitions)
Requested 5800 transitions but only 1600 in buffer. Sampling 4200 additional transitions.
Creating fragment pairs
Gathering preferences
Dataset now contains 175 comparisons
Training agent for 1000 timesteps

(continues on next page)
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-------------------------------------------------------
| raw/ | |
| agent/rollout/ep_len_mean | 200 |
| agent/rollout/ep_rew_mean | -1.26e+03 |
| agent/rollout/ep_rew_wrapped_mean | 46.1 |
| agent/time/fps | 4920 |
| agent/time/iterations | 1 |
| agent/time/time_elapsed | 0 |
| agent/time/total_timesteps | 10240 |
| agent/train/approx_kl | 0.0014707824 |
| agent/train/clip_fraction | 0.00308 |
| agent/train/clip_range | 0.2 |
| agent/train/entropy_loss | -1.4 |
| agent/train/explained_variance | 0.267 |
| agent/train/learning_rate | 0.0003 |
| agent/train/loss | 2.95 |
| agent/train/n_updates | 40 |
| agent/train/policy_gradient_loss | -0.000462 |
| agent/train/std | 0.973 |
| agent/train/value_loss | 4.44 |
-------------------------------------------------------
------------------------------------------------------
| mean/ | |
| agent/rollout/ep_len_mean | 200 |
| agent/rollout/ep_rew_mean | -1.26e+03 |
| agent/rollout/ep_rew_wrapped_mean | 46.1 |
| agent/time/fps | 4.92e+03 |
| agent/time/iterations | 1 |
| agent/time/time_elapsed | 0 |
| agent/time/total_timesteps | 1.02e+04 |
| agent/train/approx_kl | 0.00458 |
| agent/train/clip_fraction | 0.0319 |
| agent/train/clip_range | 0.2 |
| agent/train/entropy_loss | -1.4 |
| agent/train/explained_variance | 0.265 |
| agent/train/learning_rate | 0.0003 |
| agent/train/loss | 1.72 |
| agent/train/n_updates | 50 |
| agent/train/policy_gradient_loss | -0.00411 |
| agent/train/std | 0.982 |
| agent/train/value_loss | 7.02 |
| preferences/entropy | 0.00086 |
| reward/epoch-0/train/accuracy | 0.974 |
| reward/epoch-0/train/gt_reward_loss | 0.00409 |
| reward/epoch-0/train/loss | 0.103 |
| reward/epoch-1/train/accuracy | 0.969 |
| reward/epoch-1/train/gt_reward_loss | 0.00409 |
| reward/epoch-1/train/loss | 0.0948 |
| reward/epoch-2/train/accuracy | 0.963 |
| reward/epoch-2/train/gt_reward_loss | 0.0051 |
| reward/epoch-2/train/loss | 0.106 |
| reward/ | |
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| final/train/accuracy | 0.963 |
| final/train/gt_reward_loss | 0.0051 |
| final/train/loss | 0.106 |
------------------------------------------------------
Collecting 50 fragments (5000 transitions)
Requested 5000 transitions but only 1600 in buffer. Sampling 3400 additional transitions.
Creating fragment pairs
Gathering preferences
Dataset now contains 200 comparisons
Training agent for 1000 timesteps
-------------------------------------------------------
| raw/ | |
| agent/rollout/ep_len_mean | 200 |
| agent/rollout/ep_rew_mean | -1.26e+03 |
| agent/rollout/ep_rew_wrapped_mean | 50.8 |
| agent/time/fps | 4976 |
| agent/time/iterations | 1 |
| agent/time/time_elapsed | 0 |
| agent/time/total_timesteps | 12288 |
| agent/train/approx_kl | 0.0045790263 |
| agent/train/clip_fraction | 0.0319 |
| agent/train/clip_range | 0.2 |
| agent/train/entropy_loss | -1.4 |
| agent/train/explained_variance | 0.265 |
| agent/train/learning_rate | 0.0003 |
| agent/train/loss | 1.72 |
| agent/train/n_updates | 50 |
| agent/train/policy_gradient_loss | -0.00411 |
| agent/train/std | 0.982 |
| agent/train/value_loss | 7.02 |
-------------------------------------------------------
------------------------------------------------------
| mean/ | |
| agent/rollout/ep_len_mean | 200 |
| agent/rollout/ep_rew_mean | -1.26e+03 |
| agent/rollout/ep_rew_wrapped_mean | 50.8 |
| agent/time/fps | 4.98e+03 |
| agent/time/iterations | 1 |
| agent/time/time_elapsed | 0 |
| agent/time/total_timesteps | 1.23e+04 |
| agent/train/approx_kl | 0.0026 |
| agent/train/clip_fraction | 0.014 |
| agent/train/clip_range | 0.2 |
| agent/train/entropy_loss | -1.4 |
| agent/train/explained_variance | 0.37 |
| agent/train/learning_rate | 0.0003 |
| agent/train/loss | 3.02 |
| agent/train/n_updates | 60 |
| agent/train/policy_gradient_loss | -0.0024 |
| agent/train/std | 0.974 |
| agent/train/value_loss | 7.18 |
| preferences/entropy | 0.00229 |
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| reward/epoch-0/train/accuracy | 0.969 |
| reward/epoch-0/train/gt_reward_loss | 0.00355 |
| reward/epoch-0/train/loss | 0.0883 |
| reward/epoch-1/train/accuracy | 0.969 |
| reward/epoch-1/train/gt_reward_loss | 0.00355 |
| reward/epoch-1/train/loss | 0.084 |
| reward/epoch-2/train/accuracy | 0.955 |
| reward/epoch-2/train/gt_reward_loss | 0.0059 |
| reward/epoch-2/train/loss | 0.0948 |
| reward/ | |
| final/train/accuracy | 0.955 |
| final/train/gt_reward_loss | 0.0059 |
| final/train/loss | 0.0948 |
------------------------------------------------------

{'reward_loss': 0.0947954399245126, 'reward_accuracy': 0.9553571428571429}

After we trained the reward network using the preference comparisons algorithm, we can wrap our environment with
that learned reward.

from imitation.rewards.reward_wrapper import RewardVecEnvWrapper

learned_reward_venv = RewardVecEnvWrapper(venv, reward_net.predict_processed)

Now we can train an agent, that only sees those learned reward.

from stable_baselines3 import PPO
from stable_baselines3.ppo import MlpPolicy

learner = PPO(
policy=MlpPolicy,
env=learned_reward_venv,
seed=0,
batch_size=64,
ent_coef=0.0,
learning_rate=0.0003,
n_epochs=10,
n_steps=64,

)
learner.learn(1000) # Note: set to 100000 to train a proficient expert

<stable_baselines3.ppo.ppo.PPO at 0x7f3e449969d0>

Then we can evaluate it using the original reward.

from stable_baselines3.common.evaluation import evaluate_policy

reward, _ = evaluate_policy(learner.policy, venv, 10)
print(reward)
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2.21 Learning a Reward Function using Preference Comparisons on
Atari

In this case, we will use a convolutional neural network for our policy and reward model. We will also shape the
learned reward model with the policy’s learned value function, since these shaped rewards will be more informative
for training - incentivizing agents to move to high-value states. In the interests of execution time, we will only do a
little bit of training - much less than in the previous preference comparison notebook. To run this notebook, be sure to
install the atari extras, for example by running pip install imitation[atari].

First, we will set up the environment, reward network, et cetera.

import torch as th
import gym
from gym.wrappers import TimeLimit
import numpy as np

from seals.util import AutoResetWrapper

from stable_baselines3 import PPO
from stable_baselines3.common.atari_wrappers import AtariWrapper
from stable_baselines3.common.env_util import make_vec_env
from stable_baselines3.common.vec_env import VecFrameStack
from stable_baselines3.ppo import CnnPolicy

from imitation.algorithms import preference_comparisons
from imitation.data.wrappers import RolloutInfoWrapper
from imitation.policies.base import NormalizeFeaturesExtractor
from imitation.rewards.reward_nets import CnnRewardNet

device = th.device("cuda" if th.cuda.is_available() else "cpu")

rng = np.random.default_rng()

# Here we ensure that our environment has constant-length episodes by resetting
# it when done, and running until 100 timesteps have elapsed.
# For real training, you will want a much longer time limit.
def constant_length_asteroids(num_steps):

atari_env = gym.make("AsteroidsNoFrameskip-v4")
preprocessed_env = AtariWrapper(atari_env)
endless_env = AutoResetWrapper(preprocessed_env)
limited_env = TimeLimit(endless_env, max_episode_steps=num_steps)
return RolloutInfoWrapper(limited_env)

# For real training, you will want a vectorized environment with 8 environments in␣
→˓parallel.

(continues on next page)
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# This can be done by passing in n_envs=8 as an argument to make_vec_env.
venv = make_vec_env(constant_length_asteroids, env_kwargs={"num_steps": 100})
venv = VecFrameStack(venv, n_stack=4)

reward_net = CnnRewardNet(
venv.observation_space,
venv.action_space,

).to(device)

fragmenter = preference_comparisons.RandomFragmenter(warning_threshold=0, rng=rng)
gatherer = preference_comparisons.SyntheticGatherer(rng=rng)
preference_model = preference_comparisons.PreferenceModel(reward_net)
reward_trainer = preference_comparisons.BasicRewardTrainer(

preference_model=preference_model,
loss=preference_comparisons.CrossEntropyRewardLoss(),
epochs=3,
rng=rng,

)

agent = PPO(
policy=CnnPolicy,
env=venv,
seed=0,
n_steps=16, # To train on atari well, set this to 128
batch_size=16, # To train on atari well, set this to 256
ent_coef=0.01,
learning_rate=0.00025,
n_epochs=4,

)

trajectory_generator = preference_comparisons.AgentTrainer(
algorithm=agent,
reward_fn=reward_net,
venv=venv,
exploration_frac=0.0,
rng=rng,

)

pref_comparisons = preference_comparisons.PreferenceComparisons(
trajectory_generator,
reward_net,
num_iterations=2,
fragmenter=fragmenter,
preference_gatherer=gatherer,
reward_trainer=reward_trainer,
fragment_length=10,
transition_oversampling=1,
initial_comparison_frac=0.1,
allow_variable_horizon=False,
initial_epoch_multiplier=1,

)
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---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
Cell In[1], line 66

48 reward_trainer = preference_comparisons.BasicRewardTrainer(
49 preference_model=preference_model,
50 loss=preference_comparisons.CrossEntropyRewardLoss(),
51 epochs=3,
52 rng=rng,
53 )
55 agent = PPO(
56 policy=CnnPolicy,
57 env=venv,

(...)
63 n_epochs=4,
64 )

---> 66 trajectory_generator = preference_comparisons.AgentTrainer(
67 algorithm=agent,
68 reward_fn=reward_net,
69 venv=venv,
70 exploration_frac=0.0,
71 rng=rng,
72 )
74 pref_comparisons = preference_comparisons.PreferenceComparisons(
75 trajectory_generator,
76 reward_net,

(...)
85 initial_epoch_multiplier=1,
86 )

File ~/checkouts/readthedocs.org/user_builds/imitation/envs/stable/lib/python3.8/site-
→˓packages/imitation/algorithms/preference_comparisons.py:182, in AgentTrainer.__init__
→˓(self, algorithm, reward_fn, venv, rng, exploration_frac, switch_prob, random_prob,␣
→˓custom_logger)

172 # The BufferingWrapper records all trajectories, so we can return
173 # them after training. This should come first (before the wrapper that
174 # changes the reward function), so that we return the original environment

(...)
179 # SB3 may move the image-channel dimension in the observation space, making
180 # `algorithm.get_env()` not match with `reward_fn`.
181 self.buffering_wrapper = wrappers.BufferingWrapper(venv)

--> 182 self.venv = self.reward_venv_wrapper = reward_wrapper.RewardVecEnvWrapper(
183 self.buffering_wrapper,
184 reward_fn=self.reward_fn,
185 )
187 self.log_callback = self.reward_venv_wrapper.make_log_callback()
189 self.algorithm.set_env(self.venv)

File ~/checkouts/readthedocs.org/user_builds/imitation/envs/stable/lib/python3.8/site-
→˓packages/imitation/rewards/reward_wrapper.py:73, in RewardVecEnvWrapper.__init__(self,␣
→˓venv, reward_fn, ep_history)

71 self._old_obs = None
72 self._actions = None

---> 73 self.reset()
(continues on next page)
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File ~/checkouts/readthedocs.org/user_builds/imitation/envs/stable/lib/python3.8/site-
→˓packages/imitation/rewards/reward_wrapper.py:84, in RewardVecEnvWrapper.reset(self)

83 def reset(self):
---> 84 self._old_obs = self.venv.reset()

85 return self._old_obs

File ~/checkouts/readthedocs.org/user_builds/imitation/envs/stable/lib/python3.8/site-
→˓packages/imitation/data/wrappers.py:54, in BufferingWrapper.reset(self, **kwargs)

52 self._init_reset = True
53 self.n_transitions = 0

---> 54 obs = self.venv.reset(**kwargs)
55 self._traj_accum = rollout.TrajectoryAccumulator()
56 for i, ob in enumerate(obs):

File ~/checkouts/readthedocs.org/user_builds/imitation/envs/stable/lib/python3.8/site-
→˓packages/stable_baselines3/common/vec_env/vec_frame_stack.py:38, in VecFrameStack.
→˓reset(self)

37 def reset(self) -> Union[np.ndarray, Dict[str, np.ndarray]]:
---> 38 observation = self.venv.reset() # pytype:disable=annotation-type-mismatch

39 observation = self.stacked_obs.reset(observation)
40 return observation

File ~/checkouts/readthedocs.org/user_builds/imitation/envs/stable/lib/python3.8/site-
→˓packages/stable_baselines3/common/vec_env/dummy_vec_env.py:74, in DummyVecEnv.
→˓reset(self)

72 def reset(self) -> VecEnvObs:
73 for env_idx in range(self.num_envs):

---> 74 obs = self.envs[env_idx].reset()
75 self._save_obs(env_idx, obs)
76 return self._obs_from_buf()

File ~/checkouts/readthedocs.org/user_builds/imitation/envs/stable/lib/python3.8/site-
→˓packages/stable_baselines3/common/monitor.py:84, in Monitor.reset(self, **kwargs)

82 raise ValueError(f"Expected you to pass keyword argument {key} into reset
→˓")

83 self.current_reset_info[key] = value
---> 84 return self.env.reset(**kwargs)

File ~/checkouts/readthedocs.org/user_builds/imitation/envs/stable/lib/python3.8/site-
→˓packages/imitation/data/wrappers.py:189, in RolloutInfoWrapper.reset(self, **kwargs)

188 def reset(self, **kwargs):
--> 189 new_obs = super().reset(**kwargs)

190 self._obs = [new_obs]
191 self._rews = []

File ~/checkouts/readthedocs.org/user_builds/imitation/envs/stable/lib/python3.8/site-
→˓packages/gym/core.py:292, in Wrapper.reset(self, **kwargs)

291 def reset(self, **kwargs):
--> 292 return self.env.reset(**kwargs)

File ~/checkouts/readthedocs.org/user_builds/imitation/envs/stable/lib/python3.8/site-
(continues on next page)
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→˓packages/gym/wrappers/time_limit.py:27, in TimeLimit.reset(self, **kwargs)
25 def reset(self, **kwargs):
26 self._elapsed_steps = 0

---> 27 return self.env.reset(**kwargs)

File ~/checkouts/readthedocs.org/user_builds/imitation/envs/stable/lib/python3.8/site-
→˓packages/gymnasium/core.py:467, in Wrapper.reset(self, seed, options)

463 def reset(
464 self, *, seed: int | None = None, options: dict[str, Any] | None = None
465 ) -> tuple[WrapperObsType, dict[str, Any]]:
466 """Uses the :meth:`reset` of the :attr:`env` that can be overwritten to␣

→˓change the returned data."""
--> 467 return self.env.reset(seed=seed, options=options)

File ~/checkouts/readthedocs.org/user_builds/imitation/envs/stable/lib/python3.8/site-
→˓packages/gym/core.py:292, in Wrapper.reset(self, **kwargs)

291 def reset(self, **kwargs):
--> 292 return self.env.reset(**kwargs)

File ~/checkouts/readthedocs.org/user_builds/imitation/envs/stable/lib/python3.8/site-
→˓packages/gym/core.py:333, in RewardWrapper.reset(self, **kwargs)

332 def reset(self, **kwargs):
--> 333 return self.env.reset(**kwargs)

File ~/checkouts/readthedocs.org/user_builds/imitation/envs/stable/lib/python3.8/site-
→˓packages/gym/core.py:319, in ObservationWrapper.reset(self, **kwargs)

318 def reset(self, **kwargs):
--> 319 observation = self.env.reset(**kwargs)

320 return self.observation(observation)

File ~/checkouts/readthedocs.org/user_builds/imitation/envs/stable/lib/python3.8/site-
→˓packages/stable_baselines3/common/atari_wrappers.py:85, in FireResetEnv.reset(self,␣
→˓**kwargs)

84 def reset(self, **kwargs) -> np.ndarray:
---> 85 self.env.reset(**kwargs)

86 obs, _, done, _ = self.env.step(1)
87 if done:

File ~/checkouts/readthedocs.org/user_builds/imitation/envs/stable/lib/python3.8/site-
→˓packages/stable_baselines3/common/atari_wrappers.py:132, in EpisodicLifeEnv.reset(self,
→˓ **kwargs)

123 """
124 Calls the Gym environment reset, only when lives are exhausted.
125 This way all states are still reachable even though lives are episodic,
(...)
129 :return: the first observation of the environment
130 """
131 if self.was_real_done:

--> 132 obs = self.env.reset(**kwargs)
133 else:
134 # no-op step to advance from terminal/lost life state
135 obs, _, done, _ = self.env.step(0)

(continues on next page)

2.21. Learning a Reward Function using Preference Comparisons on Atari 85



imitation

(continued from previous page)

File ~/checkouts/readthedocs.org/user_builds/imitation/envs/stable/lib/python3.8/site-
→˓packages/gym/core.py:292, in Wrapper.reset(self, **kwargs)

291 def reset(self, **kwargs):
--> 292 return self.env.reset(**kwargs)

File ~/checkouts/readthedocs.org/user_builds/imitation/envs/stable/lib/python3.8/site-
→˓packages/stable_baselines3/common/atari_wrappers.py:58, in NoopResetEnv.reset(self,␣
→˓**kwargs)

57 def reset(self, **kwargs) -> np.ndarray:
---> 58 self.env.reset(**kwargs)

59 if self.override_num_noops is not None:
60 noops = self.override_num_noops

File ~/checkouts/readthedocs.org/user_builds/imitation/envs/stable/lib/python3.8/site-
→˓packages/gym/wrappers/time_limit.py:27, in TimeLimit.reset(self, **kwargs)

25 def reset(self, **kwargs):
26 self._elapsed_steps = 0

---> 27 return self.env.reset(**kwargs)

TypeError: reset() got an unexpected keyword argument 'options'

We are now ready to train the reward model.

pref_comparisons.train(
total_timesteps=16,
total_comparisons=15,

)

We can now wrap the environment with the learned reward model, shaped by the policy’s learned value function. Note
that if we were training this for real, we would want to normalize the output of the reward net as well as the value
function, to ensure their values are on the same scale. To do this, use the NormalizedRewardNet class from src/
imitation/rewards/reward_nets.py on reward_net, and modify the potential to add a RunningNorm module
from src/imitation/util/networks.py.

from imitation.rewards.reward_nets import ShapedRewardNet, cnn_transpose
from imitation.rewards.reward_wrapper import RewardVecEnvWrapper

def value_potential(state):
state_ = cnn_transpose(state)
return agent.policy.predict_values(state_)

shaped_reward_net = ShapedRewardNet(
base=reward_net,
potential=value_potential,
discount_factor=0.99,

)

# GOTCHA: When using the NormalizedRewardNet wrapper, you should deactivate updating
# during evaluation by passing update_stats=False to the predict_processed method.
learned_reward_venv = RewardVecEnvWrapper(venv, shaped_reward_net.predict_processed)
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Next, we train an agent that sees only the shaped, learned reward.

learner = PPO(
policy=CnnPolicy,
env=learned_reward_venv,
seed=0,
batch_size=64,
ent_coef=0.0,
learning_rate=0.0003,
n_epochs=10,
n_steps=64,

)
learner.learn(1000)

We now evaluate the learner using the original reward.

from stable_baselines3.common.evaluation import evaluate_policy

reward, _ = evaluate_policy(learner.policy, venv, 10)
print(reward)

2.21.1 Generating rollouts

When generating rollouts in image environments, be sure to use the agent’s get_env() function rather than using the
original environment.

The learner re-arranges the observations space to put the channel environment in the first dimension, and get_env()
will correctly provide a wrapped environment doing this.

from imitation.data import rollout

rollouts = rollout.rollout(
learner,
# Note that passing venv instead of agent.get_env()
# here would fail.
learner.get_env(),
rollout.make_sample_until(min_timesteps=None, min_episodes=3),
rng=rng,

)

download this notebook here

2.22 Learn a Reward Function using Maximum Conditional Entropy
Inverse Reinforcement Learning

Here, we’re going to take a tabular environment with a pre-defined reward function, Cliffworld, and solve for the optimal
policy. We then generate demonstrations from this policy, and use them to learn an approximation to the true reward
function with MCE IRL. Finally, we directly compare the learned reward to the ground-truth reward (which we have
access to in this example).

Cliffworld is a POMDP, and its “observations” consist of the (partial) observations proper and the (full) hidden envi-
ronment state. We use DictExtractWrapper to extract only the hidden states from the environment, turning it into a

2.22. Learn a Reward Function using Maximum Conditional Entropy Inverse Reinforcement
Learning
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fully observable MDP to make computing the optimal policy easy.

from functools import partial

from seals import base_envs
from seals.diagnostics.cliff_world import CliffWorldEnv
from stable_baselines3.common.vec_env import DummyVecEnv

import numpy as np

from imitation.algorithms.mce_irl import (
MCEIRL,
mce_occupancy_measures,
mce_partition_fh,
TabularPolicy,

)
from imitation.data import rollout
from imitation.rewards import reward_nets

env_creator = partial(CliffWorldEnv, height=4, horizon=40, width=7, use_xy_obs=True)
env_single = env_creator()

state_env_creator = lambda: base_envs.ExposePOMDPStateWrapper(env_creator())

# This is just a vectorized environment because `generate_trajectories` expects one
state_venv = DummyVecEnv([state_env_creator] * 4)

Then we derive an expert policy using Bellman backups. We analytically compute the occupancy measures, and also
sample some expert trajectories.

_, _, pi = mce_partition_fh(env_single)

_, om = mce_occupancy_measures(env_single, pi=pi)

rng = np.random.default_rng()
expert = TabularPolicy(

state_space=env_single.state_space,
action_space=env_single.action_space,
pi=pi,
rng=rng,

)

expert_trajs = rollout.generate_trajectories(
policy=expert,
venv=state_venv,
sample_until=rollout.make_min_timesteps(5000),
rng=rng,

)

print("Expert stats: ", rollout.rollout_stats(expert_trajs))

---------------------------------------------------------------------------
AssertionError Traceback (most recent call last)

(continues on next page)
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Cell In[2], line 6
3 _, om = mce_occupancy_measures(env_single, pi=pi)
5 rng = np.random.default_rng()

----> 6 expert = TabularPolicy(
7 state_space=env_single.state_space,
8 action_space=env_single.action_space,
9 pi=pi,
10 rng=rng,
11 )
13 expert_trajs = rollout.generate_trajectories(
14 policy=expert,
15 venv=state_venv,
16 sample_until=rollout.make_min_timesteps(5000),
17 rng=rng,
18 )
20 print("Expert stats: ", rollout.rollout_stats(expert_trajs))

File ~/checkouts/readthedocs.org/user_builds/imitation/envs/stable/lib/python3.8/site-
→˓packages/imitation/algorithms/mce_irl.py:174, in TabularPolicy.__init__(self, state_
→˓space, action_space, pi, rng)

157 def __init__(
158 self,
159 state_space: gym.Space,

(...)
162 rng: np.random.Generator,
163 ) -> None:
164 """Builds TabularPolicy.
165
166 Args:
(...)
172 `deterministic=False`.
173 """

--> 174 assert isinstance(state_space, gym.spaces.Discrete), "state not tabular"
175 assert isinstance(action_space, gym.spaces.Discrete), "action not tabular"
176 # What we call state space here is observation space in SB3 nomenclature.

AssertionError: state not tabular

2.22.1 Training the reward function

The true reward here is not linear in the reduced feature space (i.e (𝑥, 𝑦) coordinates). Finding an appropriate linear
reward is impossible, but an MLP should Just Work™.

import matplotlib.pyplot as plt
import torch as th

def train_mce_irl(demos, hidden_sizes, lr=0.01, **kwargs):
reward_net = reward_nets.BasicRewardNet(

env_single.observation_space,
env_single.action_space,

(continues on next page)
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hid_sizes=hidden_sizes,
use_action=False,
use_done=False,
use_next_state=False,

)

mce_irl = MCEIRL(
demos,
env_single,
reward_net,
log_interval=250,
optimizer_kwargs=dict(lr=lr),
rng=rng,

)
occ_measure = mce_irl.train(**kwargs)

imitation_trajs = rollout.generate_trajectories(
policy=mce_irl.policy,
venv=state_venv,
sample_until=rollout.make_min_timesteps(5000),
rng=rng,

)
print("Imitation stats: ", rollout.rollout_stats(imitation_trajs))

plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
env_single.draw_value_vec(occ_measure)
plt.title("Occupancy for learned reward")
plt.xlabel("Gridworld x-coordinate")
plt.ylabel("Gridworld y-coordinate")
plt.subplot(1, 2, 2)
_, true_occ_measure = mce_occupancy_measures(env_single)
env_single.draw_value_vec(true_occ_measure)
plt.title("Occupancy for true reward")
plt.xlabel("Gridworld x-coordinate")
plt.ylabel("Gridworld y-coordinate")
plt.show()

plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
env_single.draw_value_vec(

reward_net(th.as_tensor(env_single.observation_matrix), None, None, None)
.detach()
.numpy()

)
plt.title("Learned reward")
plt.xlabel("Gridworld x-coordinate")
plt.ylabel("Gridworld y-coordinate")
plt.subplot(1, 2, 2)
env_single.draw_value_vec(env_single.reward_matrix)
plt.title("True reward")
plt.xlabel("Gridworld x-coordinate")

(continues on next page)
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plt.ylabel("Gridworld y-coordinate")
plt.show()

return mce_irl

As you can see, a linear reward model cannot fit the data. Even though we’re training the model on analytically computed
occupancy measures for the optimal policy, the resulting reward and occupancy frequencies diverge sharply.

train_mce_irl(om, hidden_sizes=[])

Now, let’s try using a very simple nonlinear reward model: an MLP with a single hidden layer. We first train it on the
analytically computed occupancy measures. This should give a very precise result.

train_mce_irl(om, hidden_sizes=[256])

Then we train it on trajectories sampled from the expert. This gives a stochastic approximation to occupancy measure,
so performance is a little worse. Using more expert trajectories should improve performance – try it!

mce_irl_from_trajs = train_mce_irl(expert_trajs[0:10], hidden_sizes=[256])

While the learned reward function is quite different from the true reward function, it induces a virtually identical
occupancy measure over the states. In particular, states below the top row get almost the same reward as top-row states.
This is because in Cliff World, there is an upward-blowing wind which will push the agent toward the top row with
probability 0.3 at every timestep.

Even though the agent only gets reward in the top row squares, and maximum reward in the top righthand square, the
reward model considers it to be almost as good to end up in one of the squares below the top rightmost square, since
the wind will eventually blow the agent to the goal square.

download this notebook here

2.23 Learning a Reward Function using Kernel Density

This demo shows how to train a Pendulum agent (exciting!) with our simple density-based imitation learning baselines.
DensityTrainer has a few interesting parameters, but the key ones are:

1. density_type: this governs whether density is measured on (𝑠, 𝑠′) pairs (db.STATE_STATE_DENSITY), (𝑠, 𝑎)
pairs (db.STATE_ACTION_DENSITY), or single states (db.STATE_DENSITY).

2. is_stationary: determines whether a separate density model is used for each time step 𝑡 (False), or the same
model is used for transitions at all times (True).

3. standardise_inputs: if True, each dimension of the agent state vectors will be normalised to have zero mean
and unit variance over the training dataset. This can be useful when not all elements of the demonstration vector
are on the same scale, or when some elements have too wide a variation to be captured by the fixed kernel width
(1 for Gaussian kernel).

4. kernel: changes the kernel used for non-parametric density estimation. gaussian and exponential are the
best bets; see the sklearn docs for the rest.

import pprint

from imitation.algorithms import density as db
from imitation.data import types
from imitation.util import util
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# Set FAST = False for longer training. Use True for testing and CI.
FAST = True

if FAST:
N_VEC = 1
N_TRAJECTORIES = 1
N_ITERATIONS = 1
N_RL_TRAIN_STEPS = 100

else:
N_VEC = 8
N_TRAJECTORIES = 10
N_ITERATIONS = 100
N_RL_TRAIN_STEPS = int(1e5)

from stable_baselines3.common.policies import ActorCriticPolicy
from stable_baselines3 import PPO
from huggingface_sb3 import load_from_hub
from imitation.data import rollout
from stable_baselines3.common.vec_env import DummyVecEnv
from imitation.data.wrappers import RolloutInfoWrapper
import gym
import numpy as np

rng = np.random.default_rng()
env_name = "Pendulum-v1"
expert = PPO.load(

load_from_hub("HumanCompatibleAI/ppo-Pendulum-v1", "ppo-Pendulum-v1.zip")
).policy
rollout_env = DummyVecEnv(

[lambda: RolloutInfoWrapper(gym.make(env_name)) for _ in range(N_VEC)]
)
rollouts = rollout.rollout(

expert,
rollout_env,
rollout.make_sample_until(min_timesteps=2000, min_episodes=57),
rng=rng,

)

env = util.make_vec_env(env_name, n_envs=N_VEC, rng=rng)

imitation_trainer = PPO(ActorCriticPolicy, env, learning_rate=3e-4, n_steps=2048)
density_trainer = db.DensityAlgorithm(

venv=env,
rng=rng,
demonstrations=rollouts,
rl_algo=imitation_trainer,
density_type=db.DensityType.STATE_ACTION_DENSITY,
is_stationary=True,
kernel="gaussian",

(continues on next page)
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kernel_bandwidth=0.2, # found using divination & some palm reading
standardise_inputs=True,

)
density_trainer.train()

---------------------------------------------------------------------------
NotImplementedError Traceback (most recent call last)
Cell In[3], line 13

11 rng = np.random.default_rng()
12 env_name = "Pendulum-v1"

---> 13 expert = PPO.load(
14 load_from_hub("HumanCompatibleAI/ppo-Pendulum-v1", "ppo-Pendulum-v1.zip")
15 ).policy
16 rollout_env = DummyVecEnv(
17 [lambda: RolloutInfoWrapper(gym.make(env_name)) for _ in range(N_VEC)]
18 )
19 rollouts = rollout.rollout(
20 expert,
21 rollout_env,
22 rollout.make_sample_until(min_timesteps=2000, min_episodes=57),
23 rng=rng,
24 )

File ~/checkouts/readthedocs.org/user_builds/imitation/envs/stable/lib/python3.8/site-
→˓packages/stable_baselines3/common/base_class.py:717, in BaseAlgorithm.load(cls, path,␣
→˓env, device, custom_objects, print_system_info, force_reset, **kwargs)

715 model.__dict__.update(data)
716 model.__dict__.update(kwargs)

--> 717 model._setup_model()
719 try:
720 # put state_dicts back in place
721 model.set_parameters(params, exact_match=True, device=device)

File ~/checkouts/readthedocs.org/user_builds/imitation/envs/stable/lib/python3.8/site-
→˓packages/stable_baselines3/ppo/ppo.py:167, in PPO._setup_model(self)

166 def _setup_model(self) -> None:
--> 167 super()._setup_model()

169 # Initialize schedules for policy/value clipping
170 self.clip_range = get_schedule_fn(self.clip_range)

File ~/checkouts/readthedocs.org/user_builds/imitation/envs/stable/lib/python3.8/site-
→˓packages/stable_baselines3/common/on_policy_algorithm.py:111, in OnPolicyAlgorithm._
→˓setup_model(self)

107 self.set_random_seed(self.seed)
109 buffer_cls = DictRolloutBuffer if isinstance(self.observation_space, spaces.

→˓Dict) else RolloutBuffer
--> 111 self.rollout_buffer = buffer_cls(

112 self.n_steps,
113 self.observation_space,
114 self.action_space,
115 device=self.device,
116 gamma=self.gamma,

(continues on next page)

2.23. Learning a Reward Function using Kernel Density 93



imitation

(continued from previous page)

117 gae_lambda=self.gae_lambda,
118 n_envs=self.n_envs,
119 )
120 self.policy = self.policy_class( # pytype:disable=not-instantiable
121 self.observation_space,
122 self.action_space,
(...)
125 **self.policy_kwargs # pytype:disable=not-instantiable
126 )
127 self.policy = self.policy.to(self.device)

File ~/checkouts/readthedocs.org/user_builds/imitation/envs/stable/lib/python3.8/site-
→˓packages/stable_baselines3/common/buffers.py:348, in RolloutBuffer.__init__(self,␣
→˓buffer_size, observation_space, action_space, device, gae_lambda, gamma, n_envs)

338 def __init__(
339 self,
340 buffer_size: int,
(...)
346 n_envs: int = 1,
347 ):

--> 348 super().__init__(buffer_size, observation_space, action_space, device, n_
→˓envs=n_envs)

349 self.gae_lambda = gae_lambda
350 self.gamma = gamma

File ~/checkouts/readthedocs.org/user_builds/imitation/envs/stable/lib/python3.8/site-
→˓packages/stable_baselines3/common/buffers.py:50, in BaseBuffer.__init__(self, buffer_
→˓size, observation_space, action_space, device, n_envs)

48 self.observation_space = observation_space
49 self.action_space = action_space

---> 50 self.obs_shape = get_obs_shape(observation_space)
52 self.action_dim = get_action_dim(action_space)
53 self.pos = 0

File ~/checkouts/readthedocs.org/user_builds/imitation/envs/stable/lib/python3.8/site-
→˓packages/stable_baselines3/common/preprocessing.py:169, in get_obs_shape(observation_
→˓space)

166 return {key: get_obs_shape(subspace) for (key, subspace) in observation_
→˓space.spaces.items()} # type: ignore[misc]

168 else:
--> 169 raise NotImplementedError(f"{observation_space} observation space is not␣
→˓supported")

NotImplementedError: Box([-1. -1. -8.], [1. 1. 8.], (3,), float32) observation space is␣
→˓not supported

def print_stats(density_trainer, n_trajectories, epoch=""):
stats = density_trainer.test_policy(n_trajectories=n_trajectories)
print("True reward function stats:")
pprint.pprint(stats)
stats_im = density_trainer.test_policy(

true_reward=False,
(continues on next page)
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n_trajectories=n_trajectories,
)
print(f"Imitation reward function stats, epoch {epoch}:")
pprint.pprint(stats_im)

novice_stats = density_trainer.test_policy(n_trajectories=N_TRAJECTORIES)
print("Stats before training:")
print_stats(density_trainer, 1)

print("Stats after training:")
for i in range(N_ITERATIONS):

density_trainer.train_policy(N_RL_TRAIN_STEPS)
print_stats(density_trainer, 1, epoch=str(i))

download this notebook here

2.24 Train Behavior Cloning in a Custom Environment

You can use imitation to train a policy (and, for many imitation learning algorithm, learn rewards) in a custom
environment.

2.24.1 Step 1: Define the environment

We will use a simple ObservationMatching environment as an example. The premise is simple – the agent receives a
vector of observations, and must output a vector of actions that matches the observations as closely as possible.

If you have your own environment that you’d like to use, you can replace the code below with your own environment.
Make sure it complies with the standard Gym API, and that the observation and action spaces are specified correctly.

import numpy as np
import gym

from gym.spaces import Box
from gym.utils import seeding

class ObservationMatchingEnv(gym.Env):
def __init__(self, num_options: int = 2):

self.num_options = num_options
self.observation_space = Box(0, 1, shape=(num_options,), dtype=np.float32)
self.action_space = Box(0, 1, shape=(num_options,), dtype=np.float32)
self.seed()

def seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]

def reset(self):
self.state = self.np_random.uniform(size=self.num_options)

(continues on next page)
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return self.state

def step(self, action):
reward = -np.abs(self.state - action).mean()
self.state = self.np_random.uniform(size=self.num_options)
return self.state, reward, False, {}

2.24.2 Step 2: create the environment

From here, we have two options:

• Add the environment to the gym registry, and use it with existing utilities (e.g. make)

• Use the environment directly

You only need to execute the cells in step 2a, or step 2b to proceed.

At the end of these steps, we want to have:

• env: a single environment that we can use for training an expert with SB3

• venv: a vectorized environment where each individual environment is wrapped in RolloutInfoWrapper, that
we can use for collecting rollouts with imitation

Step 2a (recommended): add the environment to the gym registry

The standard approach is adding the environment to the gym registry.

gym.register(
id="custom/ObservationMatching-v0",
entry_point=ObservationMatchingEnv, # This can also be the path to the class, e.g.␣

→˓`observation_matching:ObservationMatchingEnv`
max_episode_steps=500,

)

After registering, you can create an environment is gym.make(env_id) which automatically handles the TimeLimit
wrapper.

To create a vectorized env, you can use the make_vec_env helper function (Option A), or create it directly (Options
B1 and B2)

from gym.wrappers import TimeLimit
from imitation.data import rollout
from imitation.data.wrappers import RolloutInfoWrapper
from imitation.util.util import make_vec_env
from stable_baselines3.common.vec_env import DummyVecEnv, SubprocVecEnv

# Create a single environment for training an expert with SB3
env = gym.make("custom/ObservationMatching-v0")

# Create a vectorized environment for training with `imitation`

# Option A: use the `make_vec_env` helper function - make sure to pass `post_
(continues on next page)

96 Chapter 2. Citing imitation



imitation

(continued from previous page)

→˓wrappers=[lambda env, _: RolloutInfoWrapper(env)]`
venv = make_vec_env(

"custom/ObservationMatching-v0",
rng=np.random.default_rng(),
n_envs=4,
post_wrappers=[lambda env, _: RolloutInfoWrapper(env)],

)

# Option B1: use a custom env creator, and create VecEnv directly
# def _make_env():
# """Helper function to create a single environment. Put any logic here, but make␣
→˓sure to return a RolloutInfoWrapper."""
# _env = gym.make("custom/ObservationMatching-v0")
# _env = RolloutInfoWrapper(_env)
# return _env
#
# venv = DummyVecEnv([_make_env for _ in range(4)])
#
# # Option B2: we can also use a parallel VecEnv implementation
# venv = SubprocVecEnv([_make_env for _ in range(4)])

Step 2b: directly use the environment

Alternatively, we can directly initialize the environment by instantiating the class we created earlier, and handle all the
additional logic ourselves.

from gym.wrappers import TimeLimit
from imitation.data import rollout
from imitation.data.wrappers import RolloutInfoWrapper
from stable_baselines3.common.vec_env import DummyVecEnv
import numpy as np

# Create a single environment for training with SB3
env = ObservationMatchingEnv()
env = TimeLimit(env, max_episode_steps=500)

# Create a vectorized environment for training with `imitation`

# Option A: use a helper function to create multiple environments
def _make_env():

"""Helper function to create a single environment. Put any logic here, but make sure␣
→˓to return a RolloutInfoWrapper."""

_env = ObservationMatchingEnv()
_env = TimeLimit(_env, max_episode_steps=500)
_env = RolloutInfoWrapper(_env)
return _env

venv = DummyVecEnv([_make_env for _ in range(4)])
(continues on next page)
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# Option B: use a single environment
# env = FixedHorizonCartPoleEnv()
# venv = DummyVecEnv([lambda: RolloutInfoWrapper(env)]) # Wrap a single environment --␣
→˓only useful for simple testing like this

# Option C: use multiple environments
# venv = DummyVecEnv([lambda: RolloutInfoWrapper(ObservationMatchingEnv()) for _ in␣
→˓range(4)]) # Wrap multiple environments

2.24.3 Step 3: Training

And now we’re just about done! Whether you used step 2a or 2b, your environment should now be ready to use with
SB3 and imitation.

For the sake of completeness, we’ll train a BC model, the same way as in the first tutorial, but with our custom envi-
ronment.

Keep in mind that while we’re using BC in this tutorial, you can just as easily use any of the other algorithms with the
environment prepared in this way.

from stable_baselines3 import PPO
from stable_baselines3.ppo import MlpPolicy
from stable_baselines3.common.evaluation import evaluate_policy
from gym.wrappers import TimeLimit

expert = PPO(
policy=MlpPolicy,
env=env,
seed=0,
batch_size=64,
ent_coef=0.0,
learning_rate=0.0003,
n_epochs=10,
n_steps=64,

)

reward, _ = evaluate_policy(expert, env, 10)
print(f"Reward before training: {reward}")

# Note: if you followed step 2a, i.e. registered the environment, you can use the␣
→˓environment name directly

# expert = PPO(
# policy=MlpPolicy,
# env="custom/ObservationMatching-v0",
# seed=0,
# batch_size=64,
# ent_coef=0.0,
# learning_rate=0.0003,

(continues on next page)
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# n_epochs=10,
# n_steps=64,
# )
expert.learn(10_000) # Note: set to 100000 to train a proficient expert

reward, _ = evaluate_policy(expert, env, 10)
print(f"Expert reward: {reward}")

Reward before training: -249.90842133699917
Expert reward: -101.44076811687555

rng = np.random.default_rng()
rollouts = rollout.rollout(

expert,
venv,
rollout.make_sample_until(min_timesteps=None, min_episodes=50),
rng=rng,

)
transitions = rollout.flatten_trajectories(rollouts)

from imitation.algorithms import bc

bc_trainer = bc.BC(
observation_space=env.observation_space,
action_space=env.action_space,
demonstrations=transitions,
rng=rng,

)

As before, the untrained policy only gets poor rewards:

reward_before_training, _ = evaluate_policy(bc_trainer.policy, env, 10)
print(f"Reward before training: {reward_before_training}")

Reward before training: -249.54872955018655

After training, we can get much closer to the expert’s performance:

bc_trainer.train(n_epochs=1)
reward_after_training, _ = evaluate_policy(bc_trainer.policy, env, 10)
print(f"Reward after training: {reward_after_training}")

--------------------------------
| batch_size | 32 |
| bc/ | |
| batch | 0 |
| ent_loss | -0.00284 |
| entropy | 2.84 |
| epoch | 0 |
| l2_loss | 0 |
| l2_norm | 68.5 |

(continues on next page)

2.24. Train Behavior Cloning in a Custom Environment 99



imitation

(continued from previous page)

| loss | 2.2 |
| neglogp | 2.21 |
| prob_true_act | 0.115 |
| samples_so_far | 32 |
--------------------------------
--------------------------------
| batch_size | 32 |
| bc/ | |
| batch | 500 |
| ent_loss | -0.00182 |
| entropy | 1.82 |
| epoch | 0 |
| l2_loss | 0 |
| l2_norm | 74.6 |
| loss | 1 |
| neglogp | 1.01 |
| prob_true_act | 0.37 |
| samples_so_far | 16032 |
--------------------------------
Reward after training: -35.68957635128172

download this notebook here

2.25 Reliably compare algorithm performance

Did we actually match the expert performance or was it just luck? Did this hyperparameter change actually improve the
performance of our algorithm? These are questions that we need to answer when we want to compare the performance
of different algorithms or hyperparameters.

imitation provides some tools to help you answer these questions. For demonstration purposes, we will use Behavior
Cloning on the CartPole-v1 environment. We will compare different variants of the trained algorithm, and also compare
it with a more sophisticated algorithm, DAgger.

As in the first tutorial, we will start by training an expert.

import gym
from stable_baselines3 import PPO
from stable_baselines3.ppo import MlpPolicy

env = gym.make("CartPole-v1")
expert = PPO(

policy=MlpPolicy,
env=env,
seed=0,
batch_size=64,
ent_coef=0.0,
learning_rate=0.0003,
n_epochs=10,
n_steps=64,

)
expert.learn(10_000) # set to 100_000 for better performance
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<stable_baselines3.ppo.ppo.PPO at 0x7f3b1865ae50>

For comparison, let’s also train a not-quite-expert.

not_expert = PPO(
policy=MlpPolicy,
env=env,
seed=0,
batch_size=64,
ent_coef=0.0,
learning_rate=0.0003,
n_epochs=10,
n_steps=64,

)

not_expert.learn(1_000) # set to 10_000 for slightly better performance

<stable_baselines3.ppo.ppo.PPO at 0x7f3a3eb87ee0>

So are they any good? Let’s quickly get a point estimate of their performance.

from stable_baselines3.common.evaluation import evaluate_policy

env.seed(0)

expert_reward, _ = evaluate_policy(expert, env, 1)
not_expert_reward, _ = evaluate_policy(not_expert, env, 1)

print(f"Expert reward: {expert_reward:.2f}")
print(f"Not expert reward: {not_expert_reward:.2f}")

Expert reward: 178.00
Not expert reward: 87.00

But wait! We only ran the evaluation once. What if we got lucky? Let’s run the evaluation a few more times and see
what happens.

expert_reward, _ = evaluate_policy(expert, env, 10)
not_expert_reward, _ = evaluate_policy(not_expert, env, 10)

print(f"Expert reward: {expert_reward:.2f}")
print(f"Not expert reward: {not_expert_reward:.2f}")

Expert reward: 206.70
Not expert reward: 60.80

Seems a bit more robust now, but how certain are we? Fortunately, imitation provides us with tools to answer this.

We will perform a permutation test using the is_significant_reward_improvement function. We want to be very
certain – let’s set the bar high and require a p-value of 0.001.

from imitation.testing.reward_improvement import is_significant_reward_improvement

(continues on next page)
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expert_rewards, _ = evaluate_policy(expert, env, 10, return_episode_rewards=True)
not_expert_rewards, _ = evaluate_policy(

not_expert, env, 10, return_episode_rewards=True
)

significant = is_significant_reward_improvement(
not_expert_rewards, expert_rewards, 0.001

)

print(
f"The expert is {'NOT ' if not significant else ''}significantly better than the not-

→˓expert."
)

The expert is significantly better than the not-expert.

Huh, turns out we set the bar too high. We could lower our standards, but that’s for cowards. Instead, we can collect
more data and try again.

from imitation.testing.reward_improvement import is_significant_reward_improvement

expert_rewards, _ = evaluate_policy(expert, env, 100, return_episode_rewards=True)
not_expert_rewards, _ = evaluate_policy(

not_expert, env, 100, return_episode_rewards=True
)

significant = is_significant_reward_improvement(
not_expert_rewards, expert_rewards, 0.001

)

print(
f"The expert is {'NOT ' if not significant else ''}significantly better than the not-

→˓expert."
)

The expert is significantly better than the not-expert.

Here we go! We can now be 99.9% confident that the expert is better than the not-expert – in this specific case, with
these specific trained models. It might still be an extraordinary stroke of luck, or a conspiracy to make us choose the
wrong algorithm, but outside of that, we can be pretty sure our data’s correct.

We can use the same principle to with imitation learning algorithms. Let’s train a behavior cloning algorithm and see
how it compares to the expert. This time, we can lower the bar to the standard “scientific” threshold of 0.05.

Like in the first tutorial, we will start by collecting some expert data. But to spice it up, let’s also get some data from
the not-quite-expert.

from imitation.data import rollout
from imitation.data.wrappers import RolloutInfoWrapper
from stable_baselines3.common.vec_env import DummyVecEnv
import numpy as np

rng = np.random.default_rng()
(continues on next page)
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expert_rollouts = rollout.rollout(
expert,
DummyVecEnv([lambda: RolloutInfoWrapper(env)]),
rollout.make_sample_until(min_timesteps=None, min_episodes=50),
rng=rng,

)
expert_transitions = rollout.flatten_trajectories(expert_rollouts)

not_expert_rollouts = rollout.rollout(
not_expert,
DummyVecEnv([lambda: RolloutInfoWrapper(env)]),
rollout.make_sample_until(min_timesteps=None, min_episodes=50),
rng=rng,

)
not_expert_transitions = rollout.flatten_trajectories(not_expert_rollouts)

Let’s try cloning an expert and a non-expert, and see how they compare.

from imitation.algorithms import bc

expert_bc_trainer = bc.BC(
observation_space=env.observation_space,
action_space=env.action_space,
demonstrations=expert_transitions,
rng=rng,

)

not_expert_bc_trainer = bc.BC(
observation_space=env.observation_space,
action_space=env.action_space,
demonstrations=not_expert_transitions,
rng=rng,

)

expert_bc_trainer.train(n_epochs=2)
not_expert_bc_trainer.train(n_epochs=2)

---------------------------------
| batch_size | 32 |
| bc/ | |
| batch | 0 |
| ent_loss | -0.000693 |
| entropy | 0.693 |
| epoch | 0 |
| l2_loss | 0 |
| l2_norm | 72.5 |
| loss | 0.692 |
| neglogp | 0.693 |
| prob_true_act | 0.5 |
| samples_so_far | 32 |
---------------------------------

(continues on next page)
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---------------------------------
| batch_size | 32 |
| bc/ | |
| batch | 500 |
| ent_loss | -0.000549 |
| entropy | 0.549 |
| epoch | 1 |
| l2_loss | 0 |
| l2_norm | 80 |
| loss | 0.53 |
| neglogp | 0.53 |
| prob_true_act | 0.64 |
| samples_so_far | 16032 |
---------------------------------
---------------------------------
| batch_size | 32 |
| bc/ | |
| batch | 0 |
| ent_loss | -0.000693 |
| entropy | 0.693 |
| epoch | 0 |
| l2_loss | 0 |
| l2_norm | 72.5 |
| loss | 0.693 |
| neglogp | 0.693 |
| prob_true_act | 0.5 |
| samples_so_far | 32 |
---------------------------------

bc_expert_rewards, _ = evaluate_policy(
expert_bc_trainer.policy, env, 10, return_episode_rewards=True

)
bc_not_expert_rewards, _ = evaluate_policy(

not_expert_bc_trainer.policy, env, 10, return_episode_rewards=True
)
significant = is_significant_reward_improvement(

bc_not_expert_rewards, bc_expert_rewards, 0.05
)
print(f"Cloned expert rewards: {bc_expert_rewards}")
print(f"Cloned not-expert rewards: {bc_not_expert_rewards}")

print(
f"Cloned expert is {'NOT ' if not significant else ''}significantly better than the␣

→˓cloned not-expert."
)

Cloned expert rewards: [209.0, 197.0, 185.0, 228.0, 180.0, 243.0, 149.0, 240.0, 192.0,␣
→˓171.0]
Cloned not-expert rewards: [48.0, 118.0, 58.0, 50.0, 44.0, 46.0, 48.0, 46.0, 85.0, 47.0]
Cloned expert is significantly better than the cloned not-expert.

How about comparing the expert clone to the expert itself?
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bc_clone_rewards, _ = evaluate_policy(
expert_bc_trainer.policy, env, 10, return_episode_rewards=True

)

expert_rewards, _ = evaluate_policy(expert, env, 10, return_episode_rewards=True)

significant = is_significant_reward_improvement(bc_clone_rewards, expert_rewards, 0.05)

print(f"Cloned expert rewards: {bc_clone_rewards}")
print(f"Expert rewards: {expert_rewards}")

print(
f"Expert is {'NOT ' if not significant else ''}significantly better than the cloned␣

→˓expert."
)

Cloned expert rewards: [183.0, 187.0, 179.0, 196.0, 198.0, 155.0, 163.0, 188.0, 189.0,␣
→˓183.0]
Expert rewards: [186.0, 178.0, 177.0, 165.0, 173.0, 192.0, 171.0, 173.0, 190.0, 226.0]
Expert is NOT significantly better than the cloned expert.

Turns out the expert is significantly better than the clone – again, in this case. Note, however, that this is not proof
that the clone is as good as the expert – there’s a subtle difference between the two claims in the context of hypothesis
testing.

Note: if you changed the duration of the training at the beginning of this tutorial, you might get different results. While
this might break the narrative in this tutorial, it’s a good learning opportunity.

When comparing the performance of two agents, algorithms, hyperparameter sets, always remember the scope of what
you’re testing. In this tutorial, we have one instance of an expert – but RL training is famously unstable, so another
training run with another random seed would likely produce a slightly different result. So ideally, we would like to
repeat this procedure several times, training the same agent with different random seeds, and then compare the average
performance of the two agents.

Even then, this is just on one environment, with one algorithm. So be wary of generalizing your results too much.

We can also use the same method to compare different algorithms. While CartPole is pretty easy, we can make it more
difficult by decreasing the number of episodes in our dataset, and generating them with a suboptimal policy:

rollouts = rollout.rollout(
expert,
DummyVecEnv([lambda: RolloutInfoWrapper(env)]),
rollout.make_sample_until(min_timesteps=None, min_episodes=1),
rng=rng,

)
transitions = rollout.flatten_trajectories(rollouts)

Let’s try training a behavior cloning algorithm on this dataset.

Note that for DAgger, we have to cheat a little bit – it’s allowed to use the expert policy to generate additional data.
For the purposes of this tutorial, we’ll stick with this to avoid spending hours training an expert for a more complex
environment.

So while this little experiment isn’t definitive proof that DAgger is better than BC, you can use the same method to
compare any two algorithms.
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from imitation.algorithms.dagger import SimpleDAggerTrainer
import tempfile

bc_trainer = bc.BC(
observation_space=env.observation_space,
action_space=env.action_space,
demonstrations=transitions,
rng=rng,

)

bc_trainer.train(n_epochs=1)

with tempfile.TemporaryDirectory(prefix="dagger_example_") as tmpdir:
print(tmpdir)
dagger_bc_trainer = bc.BC(

observation_space=env.observation_space,
action_space=env.action_space,
rng=np.random.default_rng(),

)
dagger_trainer = SimpleDAggerTrainer(

venv=DummyVecEnv([lambda: RolloutInfoWrapper(env)]),
scratch_dir=tmpdir,
expert_policy=expert,
bc_trainer=dagger_bc_trainer,
rng=np.random.default_rng(),

)

dagger_trainer.train(5000)

---------------------------------
| batch_size | 32 |
| bc/ | |
| batch | 0 |
| ent_loss | -0.000693 |
| entropy | 0.693 |
| epoch | 0 |
| l2_loss | 0 |
| l2_norm | 72.5 |
| loss | 0.693 |
| neglogp | 0.693 |
| prob_true_act | 0.5 |
| samples_so_far | 32 |
---------------------------------
/tmp/dagger_example_36cg86w0
---------------------------------
| batch_size | 32 |
| bc/ | |
| batch | 0 |
| ent_loss | -0.000693 |
| entropy | 0.693 |
| epoch | 0 |

(continues on next page)
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| l2_loss | 0 |
| l2_norm | 72.5 |
| loss | 0.692 |
| neglogp | 0.693 |
| prob_true_act | 0.5 |
| samples_so_far | 32 |
| rollout/ | |
| return_max | 35 |
| return_mean | 20.4 |
| return_min | 14 |
| return_std | 7.5 |
---------------------------------
---------------------------------
| batch_size | 32 |
| bc/ | |
| batch | 0 |
| ent_loss | -0.000665 |
| entropy | 0.665 |
| epoch | 0 |
| l2_loss | 0 |
| l2_norm | 75.4 |
| loss | 0.551 |
| neglogp | 0.551 |
| prob_true_act | 0.582 |
| samples_so_far | 32 |
| rollout/ | |
| return_max | 97 |
| return_mean | 49.8 |
| return_min | 36 |
| return_std | 23.7 |
---------------------------------
---------------------------------
| batch_size | 32 |
| bc/ | |
| batch | 0 |
| ent_loss | -0.000194 |
| entropy | 0.194 |
| epoch | 0 |
| l2_loss | 0 |
| l2_norm | 87.9 |
| loss | 0.19 |
| neglogp | 0.19 |
| prob_true_act | 0.887 |
| samples_so_far | 32 |
| rollout/ | |
| return_max | 229 |
| return_mean | 160 |
| return_min | 108 |
| return_std | 51.6 |
---------------------------------
--------------------------------
| batch_size | 32 |

(continues on next page)
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| bc/ | |
| batch | 0 |
| ent_loss | -0.00025 |
| entropy | 0.25 |
| epoch | 0 |
| l2_loss | 0 |
| l2_norm | 96.3 |
| loss | 0.22 |
| neglogp | 0.22 |
| prob_true_act | 0.845 |
| samples_so_far | 32 |
| rollout/ | |
| return_max | 311 |
| return_mean | 244 |
| return_min | 192 |
| return_std | 39.7 |
--------------------------------
---------------------------------
| batch_size | 32 |
| bc/ | |
| batch | 0 |
| ent_loss | -0.000113 |
| entropy | 0.113 |
| epoch | 0 |
| l2_loss | 0 |
| l2_norm | 109 |
| loss | 0.0608 |
| neglogp | 0.061 |
| prob_true_act | 0.95 |
| samples_so_far | 32 |
| rollout/ | |
| return_max | 279 |
| return_mean | 194 |
| return_min | 168 |
| return_std | 42.6 |
---------------------------------
---------------------------------
| batch_size | 32 |
| bc/ | |
| batch | 0 |
| ent_loss | -7.77e-05 |
| entropy | 0.0777 |
| epoch | 0 |
| l2_loss | 0 |
| l2_norm | 120 |
| loss | 0.043 |
| neglogp | 0.0431 |
| prob_true_act | 0.964 |
| samples_so_far | 32 |
| rollout/ | |
| return_max | 235 |
| return_mean | 188 |

(continues on next page)
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| return_min | 162 |
| return_std | 25.9 |
---------------------------------
---------------------------------
| batch_size | 32 |
| bc/ | |
| batch | 0 |
| ent_loss | -8.86e-05 |
| entropy | 0.0886 |
| epoch | 0 |
| l2_loss | 0 |
| l2_norm | 131 |
| loss | 0.0434 |
| neglogp | 0.0435 |
| prob_true_act | 0.963 |
| samples_so_far | 32 |
| rollout/ | |
| return_max | 178 |
| return_mean | 155 |
| return_min | 147 |
| return_std | 11.6 |
---------------------------------
---------------------------------
| batch_size | 32 |
| bc/ | |
| batch | 500 |
| ent_loss | -1.42e-05 |
| entropy | 0.0142 |
| epoch | 3 |
| l2_loss | 0 |
| l2_norm | 139 |
| loss | 0.00379 |
| neglogp | 0.00381 |
| prob_true_act | 0.996 |
| samples_so_far | 16032 |
| rollout/ | |
| return_max | 269 |
| return_mean | 223 |
| return_min | 157 |
| return_std | 39.1 |
---------------------------------
---------------------------------
| batch_size | 32 |
| bc/ | |
| batch | 0 |
| ent_loss | -1.12e-05 |
| entropy | 0.0112 |
| epoch | 0 |
| l2_loss | 0 |
| l2_norm | 140 |
| loss | 0.00267 |
| neglogp | 0.00268 |

(continues on next page)
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| prob_true_act | 0.997 |
| samples_so_far | 32 |
| rollout/ | |
| return_max | 294 |
| return_mean | 202 |
| return_min | 158 |
| return_std | 48.9 |
---------------------------------
---------------------------------
| batch_size | 32 |
| bc/ | |
| batch | 500 |
| ent_loss | -2.06e-05 |
| entropy | 0.0206 |
| epoch | 3 |
| l2_loss | 0 |
| l2_norm | 147 |
| loss | 0.0057 |
| neglogp | 0.00573 |
| prob_true_act | 0.994 |
| samples_so_far | 16032 |
| rollout/ | |
| return_max | 500 |
| return_mean | 257 |
| return_min | 161 |
| return_std | 124 |
---------------------------------
---------------------------------
| batch_size | 32 |
| bc/ | |
| batch | 0 |
| ent_loss | -4.18e-05 |
| entropy | 0.0418 |
| epoch | 0 |
| l2_loss | 0 |
| l2_norm | 148 |
| loss | 0.0244 |
| neglogp | 0.0244 |
| prob_true_act | 0.98 |
| samples_so_far | 32 |
| rollout/ | |
| return_max | 500 |
| return_mean | 237 |
| return_min | 141 |
| return_std | 133 |
---------------------------------
---------------------------------
| batch_size | 32 |
| bc/ | |
| batch | 500 |
| ent_loss | -2.85e-05 |
| entropy | 0.0285 |

(continues on next page)
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| epoch | 2 |
| l2_loss | 0 |
| l2_norm | 154 |
| loss | 0.0124 |
| neglogp | 0.0124 |
| prob_true_act | 0.989 |
| samples_so_far | 16032 |
| rollout/ | |
| return_max | 255 |
| return_mean | 208 |
| return_min | 166 |
| return_std | 34.4 |
---------------------------------

After training both BC and DAgger, let’s compare their performances again! We expect DAgger to be better – after all,
it’s a more advanced algorithm. But is it significantly better?

bc_rewards, _ = evaluate_policy(bc_trainer.policy, env, 10, return_episode_rewards=True)
dagger_rewards, _ = evaluate_policy(

dagger_trainer.policy, env, 10, return_episode_rewards=True
)

significant = is_significant_reward_improvement(bc_rewards, dagger_rewards, 0.05)

print(f"BC rewards: {bc_rewards}")
print(f"DAgger rewards: {dagger_rewards}")

print(
f"Our DAgger agent is {'NOT ' if not significant else ''}significantly better than␣

→˓BC."
)

BC rewards: [107.0, 149.0, 100.0, 104.0, 114.0, 111.0, 96.0, 115.0, 140.0, 181.0]
DAgger rewards: [182.0, 500.0, 162.0, 183.0, 148.0, 141.0, 169.0, 165.0, 153.0, 172.0]
Our DAgger agent is significantly better than BC.

If you increased the number of training iterations for the expert (in the first cell of the tutorial), you should see that
DAgger indeed performs better than BC. If you didn’t, you likely see the opposite result. Yet another reason to be
careful when interpreting results!

Finally, let’s take a moment, to remember the limitations of this experiment. We’re comparing two algorithms on one
environment, with one dataset. We’re also using a suboptimal expert policy, which might not be the best choice for BC.
If you want to convince yourself that DAgger is better than BC, you should pick out a more complex environment, you
should run this experiment several times, with different random seeds and perform some hyperparameter optimization
to make sure we’re not just using unlucky hyperparameters. At the end, we would also need to run the same hypothesis
test across average returns of several independent runs.

But now you have all the pieces of the puzzle to do that!
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CHAPTER

THREE

API REFERENCE

imitation imitation: implementations of imitation and reward
learning algorithms.

3.1 imitation

imitation: implementations of imitation and reward learning algorithms.

Modules

imitation.algorithms Implementations of imitation and reward learning algo-
rithms.

imitation.data Modules handling environment data.
imitation.policies Classes defining policies and methods to manipulate

them (e.g.
imitation.regularization Implements a variety of regularization techniques for

NN weights.
imitation.rewards Reward models: neural network modules, serialization,

preprocessing, etc.
imitation.scripts Command-line scripts.
imitation.testing Helper methods for unit tests.
imitation.util General utility functions: e.g.

3.1.1 imitation.algorithms

Implementations of imitation and reward learning algorithms.
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Modules

imitation.algorithms.adversarial Adversarial imitation learning algorithms, AIRL and
GAIL.

imitation.algorithms.base Module of base classes and helper methods for imitation
learning algorithms.

imitation.algorithms.bc Behavioural Cloning (BC).
imitation.algorithms.dagger DAgger (https://arxiv.org/pdf/1011.0686.pdf).
imitation.algorithms.density Density-based baselines for imitation learning.
imitation.algorithms.mce_irl Finite-horizon tabular Maximum Causal Entropy IRL.
imitation.algorithms.
preference_comparisons

Learning reward models using preference comparisons.

imitation.algorithms.adversarial

Adversarial imitation learning algorithms, AIRL and GAIL.

Modules

imitation.algorithms.adversarial.airl Adversarial Inverse Reinforcement Learning (AIRL).
imitation.algorithms.adversarial.common Core code for adversarial imitation learning, shared be-

tween GAIL and AIRL.
imitation.algorithms.adversarial.gail Generative Adversarial Imitation Learning (GAIL).

imitation.algorithms.adversarial.airl

Adversarial Inverse Reinforcement Learning (AIRL).

Classes

AIRL(*, demonstrations, demo_batch_size, ...) Adversarial Inverse Reinforcement Learning (AIRL).

class imitation.algorithms.adversarial.airl.AIRL(*, demonstrations, demo_batch_size, venv, gen_algo,
reward_net, **kwargs)

Bases: AdversarialTrainer

Adversarial Inverse Reinforcement Learning (AIRL).

__init__(*, demonstrations, demo_batch_size, venv, gen_algo, reward_net, **kwargs)
Builds an AIRL trainer.

Parameters

• demonstrations (Union[Iterable[Trajectory], Iterable[Mapping[str,
Union[ndarray, Tensor]]], TransitionsMinimal]) – Demonstrations from an
expert (optional). Transitions expressed directly as a types.TransitionsMinimal object, a
sequence of trajectories, or an iterable of transition batches (mappings from keywords to
arrays containing observations, etc).
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• demo_batch_size (int) – The number of samples in each batch of expert data. The
discriminator batch size is twice this number because each discriminator batch contains a
generator sample for every expert sample.

• venv (VecEnv) – The vectorized environment to train in.

• gen_algo (BaseAlgorithm) – The generator RL algorithm that is trained to maximize
discriminator confusion. Environment and logger will be set to venv and custom_logger.

• reward_net (RewardNet) – Reward network; used as part of AIRL discriminator.

• **kwargs – Passed through to AdversarialTrainer.__init__.

Raises
TypeError – If gen_algo.policy does not have an evaluate_actions attribute (present in Ac-
torCriticPolicy), needed to compute log-probability of actions.

logits_expert_is_high(state, action, next_state, done, log_policy_act_prob=None)
Compute the discriminator’s logits for each state-action sample.

In Fu’s AIRL paper (https://arxiv.org/pdf/1710.11248.pdf), the discriminator output was given as

𝐷𝜃(𝑠, 𝑎) =
exp 𝑟𝜃(𝑠, 𝑎)

exp 𝑟𝜃(𝑠, 𝑎) + 𝜋(𝑎|𝑠)

with a high value corresponding to the expert and a low value corresponding to the generator.

In other words, the discriminator output is the probability that the action is taken by the expert rather than
the generator.

The logit of the above is given as

logit(𝐷𝜃(𝑠, 𝑎)) = 𝑟𝜃(𝑠, 𝑎)− log 𝜋(𝑎|𝑠)

which is what is returned by this function.

Parameters

• state (Tensor) – The state of the environment at the time of the action.

• action (Tensor) – The action taken by the expert or generator.

• next_state (Tensor) – The state of the environment after the action.

• done (Tensor) – whether a terminal state (as defined under the MDP of the task) has been
reached.

• log_policy_act_prob (Optional[Tensor]) – The log probability of the action taken
by the generator, log 𝜋(𝑎|𝑠).

Return type
Tensor

Returns
The logits of the discriminator for each state-action sample.

Raises
TypeError – If log_policy_act_prob is None.

property reward_test: RewardNet

Returns the unshaped version of reward network used for testing.

Return type
RewardNet
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property reward_train: RewardNet

Reward used to train generator policy.

Return type
RewardNet

venv: VecEnv

The original vectorized environment.

venv_train: VecEnv

Like self.venv, but wrapped with train reward unless in debug mode.

If debug_use_ground_truth=True was passed into the initializer then self.venv_train is the same as self.venv.

venv_wrapped: VecEnvWrapper

imitation.algorithms.adversarial.common

Core code for adversarial imitation learning, shared between GAIL and AIRL.

Functions

compute_train_stats(...) Train statistics for GAIL/AIRL discriminator.

Classes

AdversarialTrainer(*, demonstrations, ...[, ...]) Base class for adversarial imitation learning algorithms
like GAIL and AIRL.

class imitation.algorithms.adversarial.common.AdversarialTrainer(*, demonstrations,
demo_batch_size, venv,
gen_algo, reward_net,
demo_minibatch_size=None,
n_disc_updates_per_round=2,
log_dir='output/',
disc_opt_cls=<class
'torch.optim.adam.Adam'>,
disc_opt_kwargs=None,
gen_train_timesteps=None,
gen_replay_buffer_capacity=None,
custom_logger=None,
init_tensorboard=False,
init_tensorboard_graph=False,
de-
bug_use_ground_truth=False,
al-
low_variable_horizon=False)

Bases: DemonstrationAlgorithm[Transitions]

Base class for adversarial imitation learning algorithms like GAIL and AIRL.
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__init__(*, demonstrations, demo_batch_size, venv, gen_algo, reward_net, demo_minibatch_size=None,
n_disc_updates_per_round=2, log_dir='output/', disc_opt_cls=<class 'torch.optim.adam.Adam'>,
disc_opt_kwargs=None, gen_train_timesteps=None, gen_replay_buffer_capacity=None,
custom_logger=None, init_tensorboard=False, init_tensorboard_graph=False,
debug_use_ground_truth=False, allow_variable_horizon=False)

Builds AdversarialTrainer.

Parameters

• demonstrations (Union[Iterable[Trajectory], Iterable[Mapping[str,
Union[ndarray, Tensor]]], TransitionsMinimal]) – Demonstrations from an
expert (optional). Transitions expressed directly as a types.TransitionsMinimal object, a
sequence of trajectories, or an iterable of transition batches (mappings from keywords to
arrays containing observations, etc).

• demo_batch_size (int) – The number of samples in each batch of expert data. The
discriminator batch size is twice this number because each discriminator batch contains a
generator sample for every expert sample.

• venv (VecEnv) – The vectorized environment to train in.

• gen_algo (BaseAlgorithm) – The generator RL algorithm that is trained to maximize
discriminator confusion. Environment and logger will be set to venv and custom_logger.

• reward_net (RewardNet) – a Torch module that takes an observation, action and next
observation tensors as input and computes a reward signal.

• demo_minibatch_size (Optional[int]) – size of minibatch to calculate gradients over.
The gradients are accumulated until the entire batch is processed before making an opti-
mization step. This is useful in GPU training to reduce memory usage, since fewer exam-
ples are loaded into memory at once, facilitating training with larger batch sizes, but is gen-
erally slower. Must be a factor of demo_batch_size. Optional, defaults to demo_batch_size.

• n_disc_updates_per_round (int) – The number of discriminator updates after each
round of generator updates in AdversarialTrainer.learn().

• log_dir (Union[str, bytes, PathLike]) – Directory to store TensorBoard logs, plots,
etc. in.

• disc_opt_cls (Type[Optimizer]) – The optimizer for discriminator training.

• disc_opt_kwargs (Optional[Mapping]) – Parameters for discriminator training.

• gen_train_timesteps (Optional[int]) – The number of steps to train the generator
policy for each iteration. If None, then defaults to the batch size (for on-policy) or number
of environments (for off-policy).

• gen_replay_buffer_capacity (Optional[int]) – The capacity of the generator replay
buffer (the number of obs-action-obs samples from the generator that can be stored). By
default this is equal to gen_train_timesteps, meaning that we sample only from the most
recent batch of generator samples.

• custom_logger (Optional[HierarchicalLogger]) – Where to log to; if None (de-
fault), creates a new logger.

• init_tensorboard (bool) – If True, makes various discriminator TensorBoard sum-
maries.

• init_tensorboard_graph (bool) – If both this and init_tensorboard are True, then
write a Tensorboard graph summary to disk.
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• debug_use_ground_truth (bool) – If True, use the ground truth reward for
self.train_env. This disables the reward wrapping that would normally replace the envi-
ronment reward with the learned reward. This is useful for sanity checking that the policy
training is functional.

• allow_variable_horizon (bool) – If False (default), algorithm will raise an exception if
it detects trajectories of different length during training. If True, overrides this safety check.
WARNING: variable horizon episodes leak information about the reward via termination
condition, and can seriously confound evaluation. Read https://imitation.readthedocs.io/
en/latest/guide/variable_horizon.html before overriding this.

Raises
ValueError – if the batch size is not a multiple of the minibatch size.

abstract logits_expert_is_high(state, action, next_state, done, log_policy_act_prob=None)
Compute the discriminator’s logits for each state-action sample.

A high value corresponds to predicting expert, and a low value corresponds to predicting generator.

Parameters

• state (Tensor) – state at time t, of shape (batch_size,) + state_shape.

• action (Tensor) – action taken at time t, of shape (batch_size,) + action_shape.

• next_state (Tensor) – state at time t+1, of shape (batch_size,) + state_shape.

• done (Tensor) – binary episode completion flag after action at time t, of shape
(batch_size,).

• log_policy_act_prob (Optional[Tensor]) – log probability of generator policy taking
action at time t.

Return type
Tensor

Returns
Discriminator logits of shape (batch_size,). A high output indicates an expert-like transition.

property policy: BasePolicy

Returns a policy imitating the demonstration data.

Return type
BasePolicy

abstract property reward_test: RewardNet

Reward used to train policy at “test” time after adversarial training.

Return type
RewardNet

abstract property reward_train: RewardNet

Reward used to train generator policy.

Return type
RewardNet

set_demonstrations(demonstrations)
Sets the demonstration data.

Changing the demonstration data on-demand can be useful for interactive algorithms like DAgger.
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Parameters
demonstrations (Union[Iterable[Trajectory], Iterable[Mapping[str,
Union[ndarray, Tensor]]], TransitionsMinimal]) – Either a Torch DataLoader,
any other iterator that yields dictionaries containing “obs” and “acts” Tensors or NumPy
arrays, TransitionKind instance, or a Sequence of Trajectory objects.

Return type
None

train(total_timesteps, callback=None)
Alternates between training the generator and discriminator.

Every “round” consists of a call to train_gen(self.gen_train_timesteps), a call to train_disc, and finally a
call to callback(round).

Training ends once an additional “round” would cause the number of transitions sampled from the envi-
ronment to exceed total_timesteps.

Parameters

• total_timesteps (int) – An upper bound on the number of transitions to sample from
the environment during training.

• callback (Optional[Callable[[int], None]]) – A function called at the end of ev-
ery round which takes in a single argument, the round number. Round numbers are in
range(total_timesteps // self.gen_train_timesteps).

Return type
None

train_disc(*, expert_samples=None, gen_samples=None)
Perform a single discriminator update, optionally using provided samples.

Parameters

• expert_samples (Optional[Mapping]) – Transition samples from the expert in dictio-
nary form. If provided, must contain keys corresponding to every field of the Transitions
dataclass except “infos”. All corresponding values can be either NumPy arrays or Tensors.
Extra keys are ignored. Must contain self.demo_batch_size samples. If this argument is
not provided, then self.demo_batch_size expert samples from self.demo_data_loader are
used by default.

• gen_samples (Optional[Mapping]) – Transition samples from the generator pol-
icy in same dictionary form as expert_samples. If provided, must contain exactly
self.demo_batch_size samples. If not provided, then take len(expert_samples) samples
from the generator replay buffer.

Return type
Mapping[str, float]

Returns
Statistics for discriminator (e.g. loss, accuracy).

train_gen(total_timesteps=None, learn_kwargs=None)
Trains the generator to maximize the discriminator loss.

After the end of training populates the generator replay buffer (used in discriminator training) with
self.disc_batch_size transitions.

Parameters
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• total_timesteps (Optional[int]) – The number of transitions to sample from
self.venv_train during training. By default, self.gen_train_timesteps.

• learn_kwargs (Optional[Mapping]) – kwargs for the Stable Baselines RLModel.learn()
method.

Return type
None

venv: VecEnv

The original vectorized environment.

venv_train: VecEnv

Like self.venv, but wrapped with train reward unless in debug mode.

If debug_use_ground_truth=True was passed into the initializer then self.venv_train is the same as self.venv.

venv_wrapped: VecEnvWrapper

imitation.algorithms.adversarial.common.compute_train_stats(disc_logits_expert_is_high,
labels_expert_is_one, disc_loss)

Train statistics for GAIL/AIRL discriminator.

Parameters

• disc_logits_expert_is_high (Tensor) – discriminator logits produced by Adversari-
alTrainer.logits_expert_is_high.

• labels_expert_is_one (Tensor) – integer labels describing whether logit was for an ex-
pert (0) or generator (1) sample.

• disc_loss (Tensor) – final discriminator loss.

Return type
Mapping[str, float]

Returns
A mapping from statistic names to float values.

imitation.algorithms.adversarial.gail

Generative Adversarial Imitation Learning (GAIL).

Classes

GAIL(*, demonstrations, demo_batch_size, ...) Generative Adversarial Imitation Learning (GAIL).
RewardNetFromDiscriminatorLogit(base) Converts the discriminator logits raw value to a reward

signal.

class imitation.algorithms.adversarial.gail.GAIL(*, demonstrations, demo_batch_size, venv, gen_algo,
reward_net, **kwargs)

Bases: AdversarialTrainer

Generative Adversarial Imitation Learning (GAIL).
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__init__(*, demonstrations, demo_batch_size, venv, gen_algo, reward_net, **kwargs)
Generative Adversarial Imitation Learning.

Parameters

• demonstrations (Union[Iterable[Trajectory], Iterable[Mapping[str,
Union[ndarray, Tensor]]], TransitionsMinimal]) – Demonstrations from an
expert (optional). Transitions expressed directly as a types.TransitionsMinimal object, a
sequence of trajectories, or an iterable of transition batches (mappings from keywords to
arrays containing observations, etc).

• demo_batch_size (int) – The number of samples in each batch of expert data. The
discriminator batch size is twice this number because each discriminator batch contains a
generator sample for every expert sample.

• venv (VecEnv) – The vectorized environment to train in.

• gen_algo (BaseAlgorithm) – The generator RL algorithm that is trained to maximize
discriminator confusion. Environment and logger will be set to venv and custom_logger.

• reward_net (RewardNet) – a Torch module that takes an observation, action and next
observation tensor as input, then computes the logits. Used as the GAIL discriminator.

• **kwargs – Passed through to AdversarialTrainer.__init__.

allow_variable_horizon: bool

If True, allow variable horizon trajectories; otherwise error if detected.

logits_expert_is_high(state, action, next_state, done, log_policy_act_prob=None)
Compute the discriminator’s logits for each state-action sample.

Parameters

• state (Tensor) – The state of the environment at the time of the action.

• action (Tensor) – The action taken by the expert or generator.

• next_state (Tensor) – The state of the environment after the action.

• done (Tensor) – whether a terminal state (as defined under the MDP of the task) has been
reached.

• log_policy_act_prob (Optional[Tensor]) – The log probability of the action taken
by the generator, log𝑃 (𝑎|𝑠).

Return type
Tensor

Returns
The logits of the discriminator for each state-action sample.

property reward_test: RewardNet

Reward used to train policy at “test” time after adversarial training.

Return type
RewardNet

property reward_train: RewardNet

Reward used to train generator policy.

Return type
RewardNet
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venv: VecEnv

The original vectorized environment.

venv_train: VecEnv

Like self.venv, but wrapped with train reward unless in debug mode.

If debug_use_ground_truth=True was passed into the initializer then self.venv_train is the same as self.venv.

venv_wrapped: VecEnvWrapper

class imitation.algorithms.adversarial.gail.RewardNetFromDiscriminatorLogit(base)
Bases: RewardNet

Converts the discriminator logits raw value to a reward signal.

Wrapper for reward network that takes in the logits of the discriminator probability distribution and outputs the
corresponding reward for the GAIL algorithm.

Below is the derivation of the transformation that needs to be applied.

The GAIL paper defines the cost function of the generator as:

log𝐷

as shown on line 5 of Algorithm 1. In the paper, 𝐷 is the probability distribution learned by the discriminator,
where 𝐷(𝑋) = 1 if the trajectory comes from the generator, and 𝐷(𝑋) = 0 if it comes from the expert. In this
implementation, we have decided to use the opposite convention that 𝐷(𝑋) = 0 if the trajectory comes from the
generator, and 𝐷(𝑋) = 1 if it comes from the expert. Therefore, the resulting cost function is:

log (1−𝐷)

Since our algorithm trains using a reward function instead of a loss function, we need to invert the sign to get:

𝑅 = − log (1−𝐷) = log
1

1−𝐷

Now, let 𝐿 be the output of our reward net, which gives us the logits of D (𝐿 = logit𝐷). We can write:

𝐷 = sigmoid𝐿 =
1

1 + 𝑒−𝐿

Since 1− sigmoid (𝐿) is the same as sigmoid (−𝐿), we can write:

𝑅 = − log sigmoid (−𝐿)

which is a non-decreasing map from the logits of D to the reward.

__init__(base)
Builds LogSigmoidRewardNet to wrap reward_net.

forward(state, action, next_state, done)
Compute rewards for a batch of transitions and keep gradients.

Return type
Tensor

training: bool
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imitation.algorithms.base

Module of base classes and helper methods for imitation learning algorithms.

Functions

make_data_loader(transitions, batch_size[, ...]) Converts demonstration data to Torch data loader.

Classes

BaseImitationAlgorithm(*[, custom_logger, ...]) Base class for all imitation learning algorithms.
DemonstrationAlgorithm(*, demonstrations[, ...]) An algorithm that learns from demonstration: BC, IRL,

etc.

class imitation.algorithms.base.BaseImitationAlgorithm(*, custom_logger=None,
allow_variable_horizon=False)

Bases: ABC

Base class for all imitation learning algorithms.

__init__(*, custom_logger=None, allow_variable_horizon=False)
Creates an imitation learning algorithm.

Parameters

• custom_logger (Optional[HierarchicalLogger]) – Where to log to; if None (de-
fault), creates a new logger.

• allow_variable_horizon (bool) – If False (default), algorithm will raise an exception if
it detects trajectories of different length during training. If True, overrides this safety check.
WARNING: variable horizon episodes leak information about the reward via termination
condition, and can seriously confound evaluation. Read https://imitation.readthedocs.io/
en/latest/getting-started/variable-horizon.html before overriding this.

allow_variable_horizon: bool

If True, allow variable horizon trajectories; otherwise error if detected.

property logger: HierarchicalLogger

Return type
HierarchicalLogger

class imitation.algorithms.base.DemonstrationAlgorithm(*, demonstrations, custom_logger=None,
allow_variable_horizon=False)

Bases: BaseImitationAlgorithm , Generic[TransitionKind]

An algorithm that learns from demonstration: BC, IRL, etc.

__init__(*, demonstrations, custom_logger=None, allow_variable_horizon=False)
Creates an algorithm that learns from demonstrations.

Parameters
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• demonstrations (Union[Iterable[Trajectory], Iterable[Mapping[str,
Union[ndarray, Tensor]]], TransitionsMinimal, None]) – Demonstrations from an
expert (optional). Transitions expressed directly as a types.TransitionsMinimal object, a
sequence of trajectories, or an iterable of transition batches (mappings from keywords to
arrays containing observations, etc).

• custom_logger (Optional[HierarchicalLogger]) – Where to log to; if None (de-
fault), creates a new logger.

• allow_variable_horizon (bool) – If False (default), algorithm will raise an exception if
it detects trajectories of different length during training. If True, overrides this safety check.
WARNING: variable horizon episodes leak information about the reward via termination
condition, and can seriously confound evaluation. Read https://imitation.readthedocs.io/
en/latest/getting-started/variable-horizon.html before overriding this.

allow_variable_horizon: bool

If True, allow variable horizon trajectories; otherwise error if detected.

abstract property policy: BasePolicy

Returns a policy imitating the demonstration data.

Return type
BasePolicy

abstract set_demonstrations(demonstrations)
Sets the demonstration data.

Changing the demonstration data on-demand can be useful for interactive algorithms like DAgger.

Parameters
demonstrations (Union[Iterable[Trajectory], Iterable[Mapping[str,
Union[ndarray, Tensor]]], TransitionsMinimal]) – Either a Torch DataLoader,
any other iterator that yields dictionaries containing “obs” and “acts” Tensors or NumPy
arrays, TransitionKind instance, or a Sequence of Trajectory objects.

Return type
None

imitation.algorithms.base.make_data_loader(transitions, batch_size, data_loader_kwargs=None)
Converts demonstration data to Torch data loader.

Parameters

• transitions (Union[Iterable[Trajectory], Iterable[Mapping[str,
Union[ndarray, Tensor]]], TransitionsMinimal]) – Transitions expressed directly as
a types.TransitionsMinimal object, a sequence of trajectories, or an iterable of transition
batches (mappings from keywords to arrays containing observations, etc).

• batch_size (int) – The size of the batch to create. Does not change the batch size if
transitions is already an iterable of transition batches.

• data_loader_kwargs (Optional[Mapping[str, Any]]) – Arguments to pass to
th_data.DataLoader.

Return type
Iterable[Mapping[str, Union[ndarray, Tensor]]]

Returns
An iterable of transition batches.

Raises
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• ValueError – if transitions is an iterable over transition batches with batch size not equal
to batch_size; or if transitions is transitions or a sequence of trajectories with total timesteps
less than batch_size.

• TypeError – if transitions is an unsupported type.

imitation.algorithms.bc

Behavioural Cloning (BC).

Trains policy by applying supervised learning to a fixed dataset of (observation, action) pairs generated by some expert
demonstrator.

Functions

enumerate_batches(batch_it) Prepends batch stats before the batches of a batch itera-
tor.

reconstruct_policy(policy_path[, device]) Reconstruct a saved policy.

Classes

BC(*, observation_space, action_space, rng) Behavioral cloning (BC).
BCLogger(logger) Utility class to help logging information relevant to Be-

havior Cloning.
BCTrainingMetrics(neglogp, entropy, ...) Container for the different components of behavior

cloning loss.
BatchIteratorWithEpochEndCallback(...) Loops through batches from a batch loader and calls a

callback after every epoch.
BehaviorCloningLossCalculator(ent_weight, ...) Functor to compute the loss used in Behavior Cloning.
RolloutStatsComputer(venv, n_episodes) Computes statistics about rollouts.

class imitation.algorithms.bc.BC(*, observation_space, action_space, rng, policy=None,
demonstrations=None, batch_size=32, minibatch_size=None,
optimizer_cls=<class 'torch.optim.adam.Adam'>,
optimizer_kwargs=None, ent_weight=0.001, l2_weight=0.0,
device='auto', custom_logger=None)

Bases: DemonstrationAlgorithm

Behavioral cloning (BC).

Recovers a policy via supervised learning from observation-action pairs.

__init__(*, observation_space, action_space, rng, policy=None, demonstrations=None, batch_size=32,
minibatch_size=None, optimizer_cls=<class 'torch.optim.adam.Adam'>, optimizer_kwargs=None,
ent_weight=0.001, l2_weight=0.0, device='auto', custom_logger=None)

Builds BC.

Parameters

• observation_space (Space) – the observation space of the environment.

• action_space (Space) – the action space of the environment.

• rng (Generator) – the random state to use for the random number generator.
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• policy (Optional[ActorCriticPolicy]) – a Stable Baselines3 policy; if unspecified,
defaults to FeedForward32Policy.

• demonstrations (Union[Iterable[Trajectory], Iterable[Mapping[str,
Union[ndarray, Tensor]]], TransitionsMinimal, None]) – Demonstrations from an
expert (optional). Transitions expressed directly as a types.TransitionsMinimal object, a
sequence of trajectories, or an iterable of transition batches (mappings from keywords to
arrays containing observations, etc).

• batch_size (int) – The number of samples in each batch of expert data.

• minibatch_size (Optional[int]) – size of minibatch to calculate gradients over. The
gradients are accumulated until batch_size examples are processed before making an op-
timization step. This is useful in GPU training to reduce memory usage, since fewer ex-
amples are loaded into memory at once, facilitating training with larger batch sizes, but is
generally slower. Must be a factor of batch_size. Optional, defaults to batch_size.

• optimizer_cls (Type[Optimizer]) – optimiser to use for supervised training.

• optimizer_kwargs (Optional[Mapping[str, Any]]) – keyword arguments, excluding
learning rate and weight decay, for optimiser construction.

• ent_weight (float) – scaling applied to the policy’s entropy regularization.

• l2_weight (float) – scaling applied to the policy’s L2 regularization.

• device (Union[str, device]) – name/identity of device to place policy on.

• custom_logger (Optional[HierarchicalLogger]) – Where to log to; if None (de-
fault), creates a new logger.

Raises
ValueError – If weight_decay is specified in optimizer_kwargs (use the parameter l2_weight
instead), or if the batch size is not a multiple of the minibatch size.

allow_variable_horizon: bool

If True, allow variable horizon trajectories; otherwise error if detected.

property policy: ActorCriticPolicy

Returns a policy imitating the demonstration data.

Return type
ActorCriticPolicy

save_policy(policy_path)
Save policy to a path. Can be reloaded by .reconstruct_policy().

Parameters
policy_path (Union[str, bytes, PathLike]) – path to save policy to.

Return type
None

set_demonstrations(demonstrations)
Sets the demonstration data.

Changing the demonstration data on-demand can be useful for interactive algorithms like DAgger.

Parameters
demonstrations (Union[Iterable[Trajectory], Iterable[Mapping[str,
Union[ndarray, Tensor]]], TransitionsMinimal]) – Either a Torch DataLoader,
any other iterator that yields dictionaries containing “obs” and “acts” Tensors or NumPy
arrays, TransitionKind instance, or a Sequence of Trajectory objects.
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Return type
None

train(*, n_epochs=None, n_batches=None, on_epoch_end=None, on_batch_end=None, log_interval=500,
log_rollouts_venv=None, log_rollouts_n_episodes=5, progress_bar=True, reset_tensorboard=False)

Train with supervised learning for some number of epochs.

Here an ‘epoch’ is just a complete pass through the expert data loader, as set by
self.set_expert_data_loader(). Note, that when you specify n_batches smaller than the number of
batches in an epoch, the on_epoch_end callback will never be called.

Parameters

• n_epochs (Optional[int]) – Number of complete passes made through expert data be-
fore ending training. Provide exactly one of n_epochs and n_batches.

• n_batches (Optional[int]) – Number of batches loaded from dataset before ending
training. Provide exactly one of n_epochs and n_batches.

• on_epoch_end (Optional[Callable[[], None]]) – Optional callback with no parameters
to run at the end of each epoch.

• on_batch_end (Optional[Callable[[], None]]) – Optional callback with no parameters
to run at the end of each batch.

• log_interval (int) – Log stats after every log_interval batches.

• log_rollouts_venv (Optional[VecEnv]) – If not None, then this VecEnv (whose ob-
servation and actions spaces must match self.observation_space and self.action_space) is
used to generate rollout stats, including average return and average episode length. If None,
then no rollouts are generated.

• log_rollouts_n_episodes (int) – Number of rollouts to generate when calculating
rollout stats. Non-positive number disables rollouts.

• progress_bar (bool) – If True, then show a progress bar during training.

• reset_tensorboard (bool) – If True, then start plotting to Tensorboard from x=0 even if
.train() logged to Tensorboard previously. Has no practical effect if .train() is being called
for the first time.

class imitation.algorithms.bc.BCLogger(logger)
Bases: object

Utility class to help logging information relevant to Behavior Cloning.

__init__(logger)
Create new BC logger.

Parameters
logger (HierarchicalLogger) – The logger to feed all the information to.

log_batch(batch_num, batch_size, num_samples_so_far, training_metrics, rollout_stats)

log_epoch(epoch_number)

reset_tensorboard_steps()

class imitation.algorithms.bc.BCTrainingMetrics(neglogp, entropy, ent_loss, prob_true_act, l2_norm,
l2_loss, loss)

Bases: object

Container for the different components of behavior cloning loss.
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__init__(neglogp, entropy, ent_loss, prob_true_act, l2_norm, l2_loss, loss)

ent_loss: Tensor

entropy: Optional[Tensor]

l2_loss: Tensor

l2_norm: Tensor

loss: Tensor

neglogp: Tensor

prob_true_act: Tensor

class imitation.algorithms.bc.BatchIteratorWithEpochEndCallback(batch_loader, n_epochs,
n_batches, on_epoch_end)

Bases: object

Loops through batches from a batch loader and calls a callback after every epoch.

Will throw an exception when an epoch contains no batches.

__init__(batch_loader, n_epochs, n_batches, on_epoch_end)

batch_loader: Iterable[Mapping[str, Union[ndarray, Tensor]]]

n_batches: Optional[int]

n_epochs: Optional[int]

on_epoch_end: Optional[Callable[[int], None]]

class imitation.algorithms.bc.BehaviorCloningLossCalculator(ent_weight, l2_weight)
Bases: object

Functor to compute the loss used in Behavior Cloning.

__init__(ent_weight, l2_weight)

ent_weight: float

l2_weight: float

class imitation.algorithms.bc.RolloutStatsComputer(venv, n_episodes)
Bases: object

Computes statistics about rollouts.

Parameters

• venv (Optional[VecEnv]) – The vectorized environment in which to compute the rollouts.

• n_episodes (int) – The number of episodes to base the statistics on.

__init__(venv, n_episodes)

n_episodes: int

venv: Optional[VecEnv]
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imitation.algorithms.bc.enumerate_batches(batch_it)
Prepends batch stats before the batches of a batch iterator.

Return type
Iterable[Tuple[Tuple[int, int, int], Mapping[str, Union[ndarray, Tensor]]]]

imitation.algorithms.bc.reconstruct_policy(policy_path, device='auto')
Reconstruct a saved policy.

Parameters

• policy_path (str) – path where .save_policy() has been run.

• device (Union[device, str]) – device on which to load the policy.

Returns
policy with reloaded weights.

Return type
policy

imitation.algorithms.dagger

DAgger (https://arxiv.org/pdf/1011.0686.pdf).

Interactively trains policy by collecting some demonstrations, doing BC, collecting more demonstrations, doing BC
again, etc. Initially the demonstrations just come from the expert’s policy; over time, they shift to be drawn more and
more from the imitator’s policy.

Functions

reconstruct_trainer(scratch_dir, venv[, ...]) Reconstruct trainer from the latest snapshot in some
working directory.

Classes

BetaSchedule() Computes beta (% of time demonstration action used)
from training round.

DAggerTrainer(*, venv, scratch_dir, rng[, ...]) DAgger training class with low-level API suitable for in-
teractive human feedback.

ExponentialBetaSchedule(decay_probability) Exponentially decaying schedule for beta.
InteractiveTrajectoryCollector(venv, ...) DAgger VecEnvWrapper for querying and saving expert

actions.
LinearBetaSchedule(rampdown_rounds) Linearly-decreasing schedule for beta.
SimpleDAggerTrainer(*, venv, scratch_dir, ...) Simpler subclass of DAggerTrainer for training with

synthetic feedback.
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Exceptions

NeedsDemosException Signals demos need to be collected for current round be-
fore continuing.

class imitation.algorithms.dagger.BetaSchedule

Bases: ABC

Computes beta (% of time demonstration action used) from training round.

class imitation.algorithms.dagger.DAggerTrainer(*, venv, scratch_dir, rng, beta_schedule=None,
bc_trainer, custom_logger=None)

Bases: BaseImitationAlgorithm

DAgger training class with low-level API suitable for interactive human feedback.

In essence, this is just BC with some helpers for incrementally resuming training and interpolating between
demonstrator/learnt policies. Interaction proceeds in “rounds” in which the demonstrator first provides a fresh set
of demonstrations, and then an underlying BC is invoked to fine-tune the policy on the entire set of demonstrations
collected in all rounds so far. Demonstrations and policy/trainer checkpoints are stored in a directory with the
following structure:

scratch-dir-name/
checkpoint-001.pt
checkpoint-002.pt
...
checkpoint-XYZ.pt
checkpoint-latest.pt
demos/

round-000/
demos_round_000_000.npz
demos_round_000_001.npz
...

round-001/
demos_round_001_000.npz
...

...
round-XYZ/

...

DEFAULT_N_EPOCHS: int = 4

The default number of BC training epochs in extend_and_update.

__init__(*, venv, scratch_dir, rng, beta_schedule=None, bc_trainer, custom_logger=None)
Builds DAggerTrainer.

Parameters

• venv (VecEnv) – Vectorized training environment.

• scratch_dir (Union[str, bytes, PathLike]) – Directory to use to store intermediate
training information (e.g. for resuming training).

• rng (Generator) – random state for random number generation.
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• beta_schedule (Optional[Callable[[int], float]]) – Provides a value of beta (the
probability of taking expert action in any given state) at each round of training. If None,
then linear_beta_schedule will be used instead.

• bc_trainer (BC) – A BC instance used to train the underlying policy.

• custom_logger (Optional[HierarchicalLogger]) – Where to log to; if None (de-
fault), creates a new logger.

property batch_size: int

Return type
int

create_trajectory_collector()

Create trajectory collector to extend current round’s demonstration set.

Return type
InteractiveTrajectoryCollector

Returns
A collector configured with the appropriate beta, imitator policy, etc. for the current round.
Refer to the documentation for InteractiveTrajectoryCollector to see how to use this.

extend_and_update(bc_train_kwargs=None)
Extend internal batch of data and train BC.

Specifically, this method will load new transitions (if necessary), train the model for a while, and advance
the round counter. If there are no fresh demonstrations in the demonstration directory for the current round,
then this will raise a NeedsDemosException instead of training or advancing the round counter. In that case,
the user should call .create_trajectory_collector() and use the returned InteractiveTrajectoryCollector to
produce a new set of demonstrations for the current interaction round.

Parameters
bc_train_kwargs (Optional[Mapping[str, Any]]) – Keyword arguments for calling
BC.train(). If the log_rollouts_venv key is not provided, then it is set to self.venv by de-
fault. If neither of the n_epochs and n_batches keys are provided, then n_epochs is set to
self.DEFAULT_N_EPOCHS.

Return type
int

Returns
New round number after advancing the round counter.

property logger: HierarchicalLogger

Returns logger for this object.

Return type
HierarchicalLogger

property policy: BasePolicy

Return type
BasePolicy

save_policy(policy_path)
Save the current policy only (and not the rest of the trainer).

Parameters
policy_path (Union[str, bytes, PathLike]) – path to save policy to.
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Return type
None

save_trainer()

Create a snapshot of trainer in the scratch/working directory.

The created snapshot can be reloaded with reconstruct_trainer(). In addition to saving one copy of the
policy in the trainer snapshot, this method saves a second copy of the policy in its own file. Having a second
copy of the policy is convenient because it can be loaded on its own and passed to evaluation routines for
other algorithms.

Returns
a path to one of the created DAggerTrainer checkpoints. policy_path: a path to one of the
created DAggerTrainer policies.

Return type
checkpoint_path

class imitation.algorithms.dagger.ExponentialBetaSchedule(decay_probability)
Bases: BetaSchedule

Exponentially decaying schedule for beta.

__init__(decay_probability)
Builds ExponentialBetaSchedule.

Parameters
decay_probability (float) – the decay factor for beta.

Raises
ValueError – if decay_probability not within (0, 1].

class imitation.algorithms.dagger.InteractiveTrajectoryCollector(venv, get_robot_acts, beta,
save_dir, rng)

Bases: VecEnvWrapper

DAgger VecEnvWrapper for querying and saving expert actions.

Every call to .step(actions) accepts and saves expert actions to self.save_dir, but only forwards expert actions
to the wrapped VecEnv with probability self.beta. With probability 1 - self.beta, a “robot” action (i.e an action
from the imitation policy) is forwarded instead.

Demonstrations are saved as TrajectoryWithRew to self.save_dir at the end of every episode.

__init__(venv, get_robot_acts, beta, save_dir, rng)
Builds InteractiveTrajectoryCollector.

Parameters

• venv (VecEnv) – vectorized environment to sample trajectories from.

• get_robot_acts (Callable[[ndarray], ndarray]) – get robot actions that can be sub-
stituted for human actions. Takes a vector of observations as input & returns a vector of
actions.

• beta (float) – fraction of the time to use action given to .step() instead of robot action.
The choice of robot or human action is independently randomized for each individual Env
at every timestep.

• save_dir (Union[str, bytes, PathLike]) – directory to save collected trajectories in.

• rng (Generator) – random state for random number generation.
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reset()

Resets the environment.

Returns
first observation of a new trajectory.

Return type
obs

seed(seed=None)
Set the seed for the DAgger random number generator and wrapped VecEnv.

The DAgger RNG is used along with self.beta to determine whether the expert or robot action is forwarded
to the wrapped VecEnv.

Parameters
seed (Optional[int]) – The random seed. May be None for completely random seeding.

Return type
List[Optional[int]]

Returns
A list containing the seeds for each individual env. Note that all list elements may be None,
if the env does not return anything when seeded.

step_async(actions)
Steps with a 1 - beta chance of using self.get_robot_acts instead.

DAgger needs to be able to inject imitation policy actions randomly at some subset of time steps. This
method has a self.beta chance of keeping the actions passed in as an argument, and a 1 - self.beta chance
of forwarding actions generated by self.get_robot_acts instead. “robot” (i.e. imitation policy) action if
necessary.

At the end of every episode, a TrajectoryWithRew is saved to self.save_dir, where every saved action is the
expert action, regardless of whether the robot action was used during that timestep.

Parameters
actions (ndarray) – the _intended_ demonstrator/expert actions for the current state. This
will be executed with probability self.beta. Otherwise, a “robot” (typically a BC policy) action
will be sampled and executed instead via self.get_robot_act.

Return type
None

step_wait()

Returns observation, reward, etc after previous step_async() call.

Stores the transition, and saves trajectory as demo once complete.

Return type
Tuple[Union[ndarray, Dict[str, ndarray], Tuple[ndarray, ...]], ndarray, ndarray,
List[Dict]]

Returns
Observation, reward, dones (is terminal?) and info dict.

traj_accum: Optional[TrajectoryAccumulator]

class imitation.algorithms.dagger.LinearBetaSchedule(rampdown_rounds)
Bases: BetaSchedule

Linearly-decreasing schedule for beta.
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__init__(rampdown_rounds)
Builds LinearBetaSchedule.

Parameters
rampdown_rounds (int) – number of rounds over which to anneal beta.

exception imitation.algorithms.dagger.NeedsDemosException

Bases: Exception

Signals demos need to be collected for current round before continuing.

class imitation.algorithms.dagger.SimpleDAggerTrainer(*, venv, scratch_dir, expert_policy, rng,
expert_trajs=None,
**dagger_trainer_kwargs)

Bases: DAggerTrainer

Simpler subclass of DAggerTrainer for training with synthetic feedback.

__init__(*, venv, scratch_dir, expert_policy, rng, expert_trajs=None, **dagger_trainer_kwargs)
Builds SimpleDAggerTrainer.

Parameters

• venv (VecEnv) – Vectorized training environment. Note that when the robot action is
randomly injected (in accordance with beta_schedule argument), every individual envi-
ronment will get a robot action simultaneously for that timestep.

• scratch_dir (Union[str, bytes, PathLike]) – Directory to use to store intermediate
training information (e.g. for resuming training).

• expert_policy (BasePolicy) – The expert policy used to generate synthetic demonstra-
tions.

• rng (Generator) – Random state to use for the random number generator.

• expert_trajs (Optional[Sequence[Trajectory]]) – Optional starting dataset that is
inserted into the round 0 dataset.

• dagger_trainer_kwargs – Other keyword arguments passed to the superclass initializer
DAggerTrainer.__init__.

Raises
ValueError – The observation or action space does not match between venv and ex-
pert_policy.

allow_variable_horizon: bool

If True, allow variable horizon trajectories; otherwise error if detected.

train(total_timesteps, *, rollout_round_min_episodes=3, rollout_round_min_timesteps=500,
bc_train_kwargs=None)

Train the DAgger agent.

The agent is trained in “rounds” where each round consists of a dataset aggregation step followed by BC
update step.

During a dataset aggregation step, self.expert_policy is used to perform rollouts in the environment but
there is a 1 - beta chance (beta is determined from the round number and self.beta_schedule) that the
DAgger agent’s action is used instead. Regardless of whether the DAgger agent’s action is used during the
rollout, the expert action and corresponding observation are always appended to the dataset. The number
of environment steps in the dataset aggregation stage is determined by the rollout_round_min* arguments.

During a BC update step, BC.train() is called to update the DAgger agent on all data collected so far.
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Parameters

• total_timesteps (int) – The number of timesteps to train inside the environment. In
practice this is a lower bound, because the number of timesteps is rounded up to finish
the minimum number of episdoes or timesteps in the last DAgger training round, and the
environment timesteps are executed in multiples of self.venv.num_envs.

• rollout_round_min_episodes (int) – The number of episodes the must be completed
completed before a dataset aggregation step ends.

• rollout_round_min_timesteps (int) – The number of environment timesteps that
must be completed before a dataset aggregation step ends. Also, that any round will al-
ways train for at least self.batch_size timesteps, because otherwise BC could fail to receive
any batches.

• bc_train_kwargs (Optional[dict]) – Keyword arguments for calling BC.train(). If
the log_rollouts_venv key is not provided, then it is set to self.venv by default. If
neither of the n_epochs and n_batches keys are provided, then n_epochs is set to
self.DEFAULT_N_EPOCHS.

Return type
None

imitation.algorithms.dagger.reconstruct_trainer(scratch_dir, venv, custom_logger=None,
device='auto')

Reconstruct trainer from the latest snapshot in some working directory.

Requires vectorized environment and (optionally) a logger, as these objects cannot be serialized.

Parameters

• scratch_dir (Union[str, bytes, PathLike]) – path to the working directory created by a
previous run of this algorithm. The directory should contain checkpoint-latest.pt and policy-
latest.pt files.

• venv (VecEnv) – Vectorized training environment.

• custom_logger (Optional[HierarchicalLogger]) – Where to log to; if None (default),
creates a new logger.

• device (Union[device, str]) – device on which to load the trainer.

Return type
DAggerTrainer

Returns
A deserialized DAggerTrainer.

imitation.algorithms.density

Density-based baselines for imitation learning.

Each of these algorithms learns a density estimate on some aspect of the demonstrations, then rewards the agent for
following that estimate.
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Classes

DensityAlgorithm(*, demonstrations, venv, rng) Learns a reward function based on density modeling.
DensityType(value) Input type the density model should use.

class imitation.algorithms.density.DensityAlgorithm(*, demonstrations, venv, rng, den-
sity_type=DensityType.STATE_ACTION_DENSITY,
kernel='gaussian', kernel_bandwidth=0.5,
rl_algo=None, is_stationary=True,
standardise_inputs=True, custom_logger=None,
allow_variable_horizon=False)

Bases: DemonstrationAlgorithm

Learns a reward function based on density modeling.

Specifically, it constructs a non-parametric estimate of p(s), p(s,a), p(s,s’) and then computes a reward using the
log of these probabilities.

__init__(*, demonstrations, venv, rng, density_type=DensityType.STATE_ACTION_DENSITY,
kernel='gaussian', kernel_bandwidth=0.5, rl_algo=None, is_stationary=True,
standardise_inputs=True, custom_logger=None, allow_variable_horizon=False)

Builds DensityAlgorithm.

Parameters

• demonstrations (Union[Iterable[Trajectory], Iterable[Mapping[str,
Union[ndarray, Tensor]]], TransitionsMinimal, None]) – expert demonstration
trajectories.

• density_type (DensityType) – type of density to train on: single state, state-action
pairs, or state-state pairs.

• kernel (str) – kernel to use for density estimation with sklearn.KernelDensity.

• kernel_bandwidth (float) – bandwidth of kernel. If standardise_inputs is true and you
are using a Gaussian kernel, then it probably makes sense to set this somewhere between
0.1 and 1.

• venv (VecEnv) – The environment to learn a reward model in. We don’t actually need any
environment interaction to fit the reward model, but we use this to extract the observation
and action space, and to train the RL algorithm rl_algo (if specified).

• rng (Generator) – random state for sampling from demonstrations.

• rl_algo (Optional[BaseAlgorithm]) – An RL algorithm to train on the resulting re-
ward model (optional).

• is_stationary (bool) – if True, share same density models for all timesteps; if False,
use a different density model for each timestep. A non-stationary model is particularly
likely to be useful when using STATE_DENSITY, to encourage agent to imitate entire
trajectories, not just a few states that have high frequency in the demonstration dataset. If
non-stationary, demonstrations must be trajectories, not transitions (which do not contain
timesteps).

• standardise_inputs (bool) – if True, then the inputs to the reward model will be stan-
dardised to have zero mean and unit variance over the demonstration trajectories. Other-
wise, inputs will be passed to the reward model with their ordinary scale.
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• custom_logger (Optional[HierarchicalLogger]) – Where to log to; if None (de-
fault), creates a new logger.

• allow_variable_horizon (bool) – If False (default), algorithm will raise an exception if
it detects trajectories of different length during training. If True, overrides this safety check.
WARNING: variable horizon episodes leak information about the reward via termination
condition, and can seriously confound evaluation. Read https://imitation.readthedocs.io/
en/latest/guide/variable_horizon.html before overriding this.

buffering_wrapper: BufferingWrapper

density_type: DensityType

is_stationary: bool

kernel: str

kernel_bandwidth: float

property policy: BasePolicy

Returns a policy imitating the demonstration data.

Return type
BasePolicy

rl_algo: Optional[BaseAlgorithm]

set_demonstrations(demonstrations)
Sets the demonstration data.

Return type
None

standardise: bool

test_policy(*, n_trajectories=10, true_reward=True)
Test current imitation policy on environment & give some rollout stats.

Parameters

• n_trajectories (int) – number of rolled-out trajectories.

• true_reward (bool) – should this use ground truth reward from underlying environment
(True), or imitation reward (False)?

Returns

rollout statistics collected by
imitation.utils.rollout.rollout_stats().

Return type
dict

train()

Fits the density model to demonstration data self.transitions.

Return type
None
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train_policy(n_timesteps=1000000, **kwargs)
Train the imitation policy for a given number of timesteps.

Parameters

• n_timesteps (int) – number of timesteps to train the policy for.

• kwargs (dict) – extra arguments that will be passed to the learn() method of the imitation
RL model. Refer to Stable Baselines docs for details.

Return type
None

transitions: Dict[Optional[int], ndarray]

venv: VecEnv

venv_wrapped: RewardVecEnvWrapper

wrapper_callback: WrappedRewardCallback

class imitation.algorithms.density.DensityType(value)
Bases: Enum

Input type the density model should use.

STATE_ACTION_DENSITY = 2

Density on (s,a) pairs.

STATE_DENSITY = 1

Density on state s.

STATE_STATE_DENSITY = 3

Density on (s,s’) pairs.

imitation.algorithms.mce_irl

Finite-horizon tabular Maximum Causal Entropy IRL.

Follows the description in chapters 9 and 10 of Brian Ziebart’s PhD thesis.

Functions

mce_occupancy_measures(env, *[, reward, pi, ...]) Calculate state visitation frequency Ds for each state s
under a given policy pi.

mce_partition_fh (env, *[, reward, discount]) Performs the soft Bellman backup for a finite-horizon
MDP.

squeeze_r(r_output) Squeeze a reward output tensor down to one dimension,
if necessary.
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Classes

MCEIRL(demonstrations, env, reward_net, rng) Tabular MCE IRL.
TabularPolicy(state_space, action_space, pi, rng) A tabular policy.

class imitation.algorithms.mce_irl.MCEIRL(demonstrations, env, reward_net, rng, optimizer_cls=<class
'torch.optim.adam.Adam'>, optimizer_kwargs=None,
discount=1.0, linf_eps=0.001, grad_l2_eps=0.0001,
log_interval=100, *, custom_logger=None)

Bases: DemonstrationAlgorithm[TransitionsMinimal]

Tabular MCE IRL.

Reward is a function of observations, but policy is a function of states.

The “observations” effectively exist just to let MCE IRL learn a reward in a reasonable feature space, giving a
helpful inductive bias, e.g. that similar states have similar reward.

Since we are performing planning to compute the policy, there is no need for function approximation in the
policy.

__init__(demonstrations, env, reward_net, rng, optimizer_cls=<class 'torch.optim.adam.Adam'>,
optimizer_kwargs=None, discount=1.0, linf_eps=0.001, grad_l2_eps=0.0001, log_interval=100,
*, custom_logger=None)

Creates MCE IRL.

Parameters

• demonstrations (Union[ndarray, Iterable[Trajectory],
Iterable[Mapping[str, Union[ndarray, Tensor]]], TransitionsMinimal, None])
– Demonstrations from an expert (optional). Can be a sequence of trajectories, or
transitions, an iterable over mappings that represent a batch of transitions, or a state
occupancy measure. The demonstrations must have observations one-hot coded unless
demonstrations is a state-occupancy measure.

• env (TabularModelPOMDP) – a tabular MDP.

• rng (Generator) – random state used for sampling from policy.

• reward_net (RewardNet) – a neural network that computes rewards for the supplied ob-
servations.

• optimizer_cls (Type[Optimizer]) – optimizer to use for supervised training.

• optimizer_kwargs (Optional[Mapping[str, Any]]) – keyword arguments for opti-
mizer construction.

• discount (float) – the discount factor to use when computing occupancy measure. If
not 1.0 (undiscounted), then demonstrations must either be a (discounted) state-occupancy
measure, or trajectories. Transitions are not allowed as we cannot discount them appropri-
ately without knowing the timestep they were drawn from.

• linf_eps (float) – optimisation terminates if the $l_{infty}$ distance between the
demonstrator’s state occupancy measure and the state occupancy measure for the current
reward falls below this value.

• grad_l2_eps (float) – optimisation also terminates if the $ell_2$ norm of the MCE IRL
gradient falls below this value.
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• log_interval (Optional[int]) – how often to log current loss stats (using logging).
None to disable.

• custom_logger (Optional[HierarchicalLogger]) – Where to log to; if None (de-
fault), creates a new logger.

Raises
ValueError – if the env horizon is not finite (or an integer).

demo_state_om: Optional[ndarray]

property policy: BasePolicy

Returns a policy imitating the demonstration data.

Return type
BasePolicy

set_demonstrations(demonstrations)
Sets the demonstration data.

Changing the demonstration data on-demand can be useful for interactive algorithms like DAgger.

Parameters
demonstrations (Union[ndarray, Iterable[Trajectory], Iterable[Mapping[str,
Union[ndarray, Tensor]]], TransitionsMinimal]) – Either a Torch DataLoader, any
other iterator that yields dictionaries containing “obs” and “acts” Tensors or NumPy arrays,
TransitionKind instance, or a Sequence of Trajectory objects.

Return type
None

train(max_iter=1000)
Runs MCE IRL.

Parameters
max_iter (int) – The maximum number of iterations to train for. May terminate earlier if
self.linf_eps or self.grad_l2_eps thresholds are reached.

Return type
ndarray

Returns
State occupancy measure for the final reward function. self.reward_net and self.optimizer will
be updated in-place during optimisation.

class imitation.algorithms.mce_irl.TabularPolicy(state_space, action_space, pi, rng)
Bases: BasePolicy

A tabular policy. Cannot be trained – prediction only.

__init__(state_space, action_space, pi, rng)
Builds TabularPolicy.

Parameters

• state_space (Space) – The state space of the environment.

• action_space (Space) – The action space of the environment.

• pi (ndarray) – A tabular policy. Three-dimensional array, where pi[t,s,a] is the probability
of taking action a at state s at timestep t.
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• rng (Generator) – Random state, used for sampling when predict is called with deter-
ministic=False.

forward(observation, deterministic=False)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks while
the latter silently ignores them.

Return type
NoReturn

pi: ndarray

predict(observation, state=None, episode_start=None, deterministic=False)
Predict action to take in given state.

Arguments follow SB3 naming convention as this is an SB3 policy. In this convention, observations are
returned by the environment, and state is a hidden state used by the policy (used by us to keep track of
timesteps).

What is observation here is a state in the underlying MDP, and would be called state elsewhere in this file.

Parameters

• observation (Union[ndarray, Mapping[str, ndarray]]) – States in the underlying
MDP.

• state (Optional[Tuple[ndarray, ...]]) – Hidden states of the policy – used to repre-
sent timesteps by us.

• episode_start (Optional[ndarray]) – Has episode completed?

• deterministic (bool) – If true, pick action with highest probability; otherwise, sample.

Return type
Tuple[ndarray, Optional[Tuple[ndarray, ...]]]

Returns
Tuple of the actions and new hidden states.

rng: Generator

set_pi(pi)
Sets tabular policy to pi.

Return type
None

imitation.algorithms.mce_irl.mce_occupancy_measures(env, *, reward=None, pi=None, discount=1.0)
Calculate state visitation frequency Ds for each state s under a given policy pi.

You can get pi from mce_partition_fh.

Parameters

• env (TabularModelPOMDP) – a tabular MDP.
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• reward (Optional[ndarray]) – reward matrix. Defaults is env.reward_matrix.

• pi (Optional[ndarray]) – policy to simulate. Defaults to soft-optimal policy w.r.t reward
matrix.

• discount (float) – rate to discount the cumulative occupancy measure D.

Return type
Tuple[ndarray, ndarray]

Returns
Tuple of D (ndarray) and Dcum (ndarray). D is of shape (env.horizon, env.n_states) and
records the probability of being in a given state at a given timestep. Dcum is of shape (env.
n_states,) and records the expected discounted number of times each state is visited.

Raises
ValueError – if env.horizon is None (infinite horizon).

imitation.algorithms.mce_irl.mce_partition_fh(env, *, reward=None, discount=1.0)
Performs the soft Bellman backup for a finite-horizon MDP.

Calculates V^{soft}, Q^{soft}, and pi using recurrences (9.1), (9.2), and (9.3) from Ziebart (2010).

Parameters

• env (TabularModelPOMDP) – a tabular, known-dynamics MDP.

• reward (Optional[ndarray]) – a reward matrix. Defaults to env.reward_matrix.

• discount (float) – discount rate.

Return type
Tuple[ndarray, ndarray, ndarray]

Returns
(V, Q, pi) corresponding to the soft values, Q-values and MCE policy. V is a 2d array, indexed
V[t,s]. Q is a 3d array, indexed Q[t,s,a]. pi is a 3d array, indexed pi[t,s,a].

Raises
ValueError – if env.horizon is None (infinite horizon).

imitation.algorithms.mce_irl.squeeze_r(r_output)
Squeeze a reward output tensor down to one dimension, if necessary.

Parameters
r_output (th.Tensor) – output of reward model. Can be either 1D ([n_states]) or 2D
([n_states, 1]).

Return type
Tensor

Returns
squeezed reward of shape [n_states].
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imitation.algorithms.preference_comparisons

Learning reward models using preference comparisons.

Trains a reward model and optionally a policy based on preferences between trajectory fragments.

Functions

get_base_model(reward_model)
rtype

RewardNet

preference_collate_fn(batch)
rtype

Tuple[Sequence[Tuple[TrajectoryWithRew,
TrajectoryWithRew]], ndarray]

Classes

ActiveSelectionFragmenter(preference_model, ...) Sample fragments of trajectories based on active selec-
tion.

AgentTrainer(algorithm, reward_fn, venv, rng) Wrapper for training an SB3 algorithm on an arbitrary
reward function.

BasicRewardTrainer(preference_model, loss, rng) Train a basic reward model.
CrossEntropyRewardLoss() Compute the cross entropy reward loss.
EnsembleTrainer(preference_model, loss, rng) Train a reward ensemble.
Fragmenter([custom_logger]) Class for creating pairs of trajectory fragments from a

set of trajectories.
LossAndMetrics(loss, metrics) Loss and auxiliary metrics for reward network training.
PreferenceComparisons(trajectory_generator, ...) Main interface for reward learning using preference

comparisons.
PreferenceDataset([max_size]) A PyTorch Dataset for preference comparisons.
PreferenceGatherer([rng, custom_logger]) Base class for gathering preference comparisons be-

tween trajectory fragments.
PreferenceModel(model[, noise_prob, ...]) Class to convert two fragments' rewards into preference

probability.
RandomFragmenter(rng[, warning_threshold, ...]) Sample fragments of trajectories uniformly at random

with replacement.
RewardLoss(*args, **kwargs) A loss function over preferences.
RewardTrainer(preference_model[, custom_logger]) Abstract base class for training reward models using

preference comparisons.
SyntheticGatherer([temperature, ...]) Computes synthetic preferences using ground-truth en-

vironment rewards.
TrajectoryDataset(trajectories, rng[, ...]) A fixed dataset of trajectories.
TrajectoryGenerator([custom_logger]) Generator of trajectories with optional training logic.
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class imitation.algorithms.preference_comparisons.ActiveSelectionFragmenter(preference_model,
base_fragmenter,
frag-
ment_sample_factor,
uncer-
tainty_on='logit',
cus-
tom_logger=None)

Bases: Fragmenter

Sample fragments of trajectories based on active selection.

Actively picks the fragment pairs with the highest uncertainty (variance) of rewards/probabilties/predictions from
ensemble model.

__init__(preference_model, base_fragmenter, fragment_sample_factor, uncertainty_on='logit',
custom_logger=None)

Initialize the active selection fragmenter.

Parameters

• preference_model (PreferenceModel) – an ensemble model that predicts the prefer-
ence of the first fragment over the other.

• base_fragmenter (Fragmenter) – fragmenter instance to get fragment pairs from tra-
jectories

• fragment_sample_factor (float) – the factor of the number of fragment pairs to sam-
ple from the base_fragmenter

• uncertainty_on (str) – the variable to calculate the variance on. Can be
logit|probability|label.

• custom_logger (Optional[HierarchicalLogger]) – Where to log to; if None (de-
fault), creates a new logger.

Raises
ValueError – Preference model not wrapped over an ensemble of networks.

raise_uncertainty_on_not_supported()

Return type
NoReturn

property uncertainty_on: str

Return type
str

variance_estimate(rews1, rews2)
Gets the variance estimate from the rewards of a fragment pair.

Parameters

• rews1 (Tensor) – rewards obtained by all the ensemble models for the first fragment.
Shape - (fragment_length, num_ensemble_members)

• rews2 (Tensor) – rewards obtained by all the ensemble models for the second fragment.
Shape - (fragment_length, num_ensemble_members)

Return type
float
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Returns
the variance estimate based on the uncertainty_on flag.

class imitation.algorithms.preference_comparisons.AgentTrainer(algorithm, reward_fn, venv, rng,
exploration_frac=0.0,
switch_prob=0.5,
random_prob=0.5,
custom_logger=None)

Bases: TrajectoryGenerator

Wrapper for training an SB3 algorithm on an arbitrary reward function.

__init__(algorithm, reward_fn, venv, rng, exploration_frac=0.0, switch_prob=0.5, random_prob=0.5,
custom_logger=None)

Initialize the agent trainer.

Parameters

• algorithm (BaseAlgorithm) – the stable-baselines algorithm to use for training.

• reward_fn (Union[RewardFn, RewardNet]) – either a RewardFn or a RewardNet in-
stance that will supply the rewards used for training the agent.

• venv (VecEnv) – vectorized environment to train in.

• rng (Generator) – random number generator used for exploration and for sampling.

• exploration_frac (float) – fraction of the trajectories that will be generated partially
randomly rather than only by the agent when sampling.

• switch_prob (float) – the probability of switching the current policy at each step for the
exploratory samples.

• random_prob (float) – the probability of picking the random policy when switching
during exploration.

• custom_logger (Optional[HierarchicalLogger]) – Where to log to; if None (de-
fault), creates a new logger.

property logger: HierarchicalLogger

Return type
HierarchicalLogger

sample(steps)
Sample a batch of trajectories.

Parameters
steps (int) – All trajectories taken together should have at least this many steps.

Return type
Sequence[TrajectoryWithRew]

Returns
A list of sampled trajectories with rewards (which should be the environment rewards, not
ones from a reward model).

train(steps, **kwargs)
Train the agent using the reward function specified during instantiation.

Parameters

• steps (int) – number of environment timesteps to train for
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• **kwargs – other keyword arguments to pass to BaseAlgorithm.train()

Raises
RuntimeError – Transitions left in self.buffering_wrapper; call self.sample first to clear
them.

Return type
None

class imitation.algorithms.preference_comparisons.BasicRewardTrainer(preference_model, loss,
rng, batch_size=32,
minibatch_size=None,
epochs=1, lr=0.001,
custom_logger=None,
regular-
izer_factory=None)

Bases: RewardTrainer

Train a basic reward model.

__init__(preference_model, loss, rng, batch_size=32, minibatch_size=None, epochs=1, lr=0.001,
custom_logger=None, regularizer_factory=None)

Initialize the reward model trainer.

Parameters

• preference_model (PreferenceModel) – the preference model to train the reward net-
work.

• loss (RewardLoss) – the loss to use

• rng (Generator) – the random number generator to use for splitting the dataset into train-
ing and validation.

• batch_size (int) – number of fragment pairs per batch

• minibatch_size (Optional[int]) – size of minibatch to calculate gradients over. The
gradients are accumulated until batch_size examples are processed before making an op-
timization step. This is useful in GPU training to reduce memory usage, since fewer ex-
amples are loaded into memory at once, facilitating training with larger batch sizes, but is
generally slower. Must be a factor of batch_size. Optional, defaults to batch_size.

• epochs (int) – number of epochs in each training iteration (can be adjusted on the fly by
specifying an epoch_multiplier in self.train() if longer training is desired in specific cases).

• lr (float) – the learning rate

• custom_logger (Optional[HierarchicalLogger]) – Where to log to; if None (de-
fault), creates a new logger.

• regularizer_factory (Optional[RegularizerFactory]) – if you would like to
apply regularization during training, specify a regularizer factory here. The fac-
tory will be used to construct a regularizer. See imitation.regularization.
RegularizerFactory for more details.

Raises
ValueError – if the batch size is not a multiple of the minibatch size.

regularizer: Optional[Regularizer]
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property requires_regularizer_update: bool

Whether the regularizer requires updating.

Return type
bool

Returns
If true, this means that a validation dataset will be used.

class imitation.algorithms.preference_comparisons.CrossEntropyRewardLoss

Bases: RewardLoss

Compute the cross entropy reward loss.

__init__()

Create cross entropy reward loss.

forward(fragment_pairs, preferences, preference_model)
Computes the loss.

Parameters

• fragment_pairs (Sequence[Tuple[Trajectory, Trajectory]]) – Batch consisting of
pairs of trajectory fragments.

• preferences (ndarray) – The probability that the first fragment is preferred over the
second. Typically 0, 1 or 0.5 (tie).

• preference_model (PreferenceModel) – model to predict the preferred fragment from
a pair.

Return type
LossAndMetrics

Returns

The cross-entropy loss between the probability predicted by the
reward model and the target probabilities in preferences. Metrics are accuracy, and
gt_reward_loss, if the ground truth reward is available.

training: bool

class imitation.algorithms.preference_comparisons.EnsembleTrainer(preference_model, loss, rng,
batch_size=32,
minibatch_size=None,
epochs=1, lr=0.001,
custom_logger=None,
regularizer_factory=None)

Bases: BasicRewardTrainer

Train a reward ensemble.

__init__(preference_model, loss, rng, batch_size=32, minibatch_size=None, epochs=1, lr=0.001,
custom_logger=None, regularizer_factory=None)

Initialize the reward model trainer.

Parameters

• preference_model (PreferenceModel) – the preference model to train the reward net-
work.

• loss (RewardLoss) – the loss to use
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• rng (Generator) – random state for the internal RNG used in bagging

• batch_size (int) – number of fragment pairs per batch

• minibatch_size (Optional[int]) – size of minibatch to calculate gradients over. The
gradients are accumulated until batch_size examples are processed before making an op-
timization step. This is useful in GPU training to reduce memory usage, since fewer ex-
amples are loaded into memory at once, facilitating training with larger batch sizes, but is
generally slower. Must be a factor of batch_size. Optional, defaults to batch_size.

• epochs (int) – number of epochs in each training iteration (can be adjusted on the fly by
specifying an epoch_multiplier in self.train() if longer training is desired in specific cases).

• lr (float) – the learning rate

• custom_logger (Optional[HierarchicalLogger]) – Where to log to; if None (de-
fault), creates a new logger.

• regularizer_factory (Optional[RegularizerFactory]) – A factory for creating a
regularizer. If None, no regularization is used.

Raises
TypeError – if model is not a RewardEnsemble.

property logger: HierarchicalLogger

Return type
HierarchicalLogger

regularizer: Optional[Regularizer]

class imitation.algorithms.preference_comparisons.Fragmenter(custom_logger=None)
Bases: ABC

Class for creating pairs of trajectory fragments from a set of trajectories.

__init__(custom_logger=None)
Initialize the fragmenter.

Parameters
custom_logger (Optional[HierarchicalLogger]) – Where to log to; if None (default),
creates a new logger.

class imitation.algorithms.preference_comparisons.LossAndMetrics(loss: Tensor, metrics:
Mapping[str, Tensor])

Bases: tuple

Loss and auxiliary metrics for reward network training.

loss: Tensor

metrics: Mapping[str, Tensor]
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class imitation.algorithms.preference_comparisons.PreferenceComparisons(trajectory_generator,
reward_model,
num_iterations,
fragmenter=None,
prefer-
ence_gatherer=None,
reward_trainer=None,
compari-
son_queue_size=None,
fragment_length=100,
transi-
tion_oversampling=1,
ini-
tial_comparison_frac=0.1,
ini-
tial_epoch_multiplier=200.0,
custom_logger=None,
al-
low_variable_horizon=False,
rng=None,
query_schedule='hyperbolic')

Bases: BaseImitationAlgorithm

Main interface for reward learning using preference comparisons.

__init__(trajectory_generator, reward_model, num_iterations, fragmenter=None,
preference_gatherer=None, reward_trainer=None, comparison_queue_size=None,
fragment_length=100, transition_oversampling=1, initial_comparison_frac=0.1,
initial_epoch_multiplier=200.0, custom_logger=None, allow_variable_horizon=False, rng=None,
query_schedule='hyperbolic')

Initialize the preference comparison trainer.

The loggers of all subcomponents are overridden with the logger used by this class.

Parameters

• trajectory_generator (TrajectoryGenerator) – generates trajectories while op-
tionally training an RL agent on the learned reward function (can also be a sampler from a
static dataset of trajectories though).

• reward_model (RewardNet) – a RewardNet instance to be used for learning the reward

• num_iterations (int) – number of times to train the agent against the reward model and
then train the reward model against newly gathered preferences.

• fragmenter (Optional[Fragmenter]) – takes in a set of trajectories and returns pairs of
fragments for which preferences will be gathered. These fragments could be random, or
they could be selected more deliberately (active learning). Default is a random fragmenter.

• preference_gatherer (Optional[PreferenceGatherer]) – how to get preferences
between trajectory fragments. Default (and currently the only option) is to use synthetic
preferences based on ground-truth rewards. Human preferences could be implemented here
in the future.

• reward_trainer (Optional[RewardTrainer]) – trains the reward model based on pairs
of fragments and associated preferences. Default is to use the preference model and loss
function from DRLHP.
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• comparison_queue_size (Optional[int]) – the maximum number of comparisons to
keep in the queue for training the reward model. If None, the queue will grow without
bound as new comparisons are added.

• fragment_length (int) – number of timesteps per fragment that is used to elicit prefer-
ences

• transition_oversampling (float) – factor by which to oversample transitions before
creating fragments. Since fragments are sampled with replacement, this is usually chosen
> 1 to avoid having the same transition in too many fragments.

• initial_comparison_frac (float) – fraction of the total_comparisons argument to
train() that will be sampled before the rest of training begins (using a randomly initial-
ized agent). This can be used to pretrain the reward model before the agent is trained
on the learned reward, to help avoid irreversibly learning a bad policy from an untrained
reward. Note that there will often be some additional pretraining comparisons since com-
parisons_per_iteration won’t exactly divide the total number of comparisons. How many
such comparisons there are depends discontinuously on total_comparisons and compar-
isons_per_iteration.

• initial_epoch_multiplier (float) – before agent training begins, train the reward
model for this many more epochs than usual (on fragments sampled from a random agent).

• custom_logger (Optional[HierarchicalLogger]) – Where to log to; if None (de-
fault), creates a new logger.

• allow_variable_horizon (bool) – If False (default), algorithm will raise an exception if
it detects trajectories of different length during training. If True, overrides this safety check.
WARNING: variable horizon episodes leak information about the reward via termination
condition, and can seriously confound evaluation. Read https://imitation.readthedocs.io/
en/latest/guide/variable_horizon.html before overriding this.

• rng (Optional[Generator]) – random number generator to use for initializing subcom-
ponents such as fragmenter. Only used when default components are used; if you instantiate
your own fragmenter, preference gatherer, etc., you are responsible for seeding them!

• query_schedule (Union[str, Callable[[float], float]]) – one of (“constant”, “hy-
perbolic”, “inverse_quadratic”), or a function that takes in a float between 0 and 1 inclusive,
representing a fraction of the total number of timesteps elapsed up to some time T, and re-
turns a potentially unnormalized probability indicating the fraction of total_comparisons
that should be queried at that iteration. This function will be called num_iterations times
in __init__() with values from np.linspace(0, 1, num_iterations) as input. The outputs
will be normalized to sum to 1 and then used to apportion the comparisons among the
num_iterations iterations.

Raises
ValueError – if query_schedule is not a valid string or callable.

allow_variable_horizon: bool

If True, allow variable horizon trajectories; otherwise error if detected.

train(total_timesteps, total_comparisons, callback=None)
Train the reward model and the policy if applicable.

Parameters

• total_timesteps (int) – number of environment interaction steps

• total_comparisons (int) – number of preferences to gather in total
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• callback (Optional[Callable[[int], None]]) – callback functions called at the end of
each iteration

Return type
Mapping[str, Any]

Returns
A dictionary with final metrics such as loss and accuracy of the reward model.

class imitation.algorithms.preference_comparisons.PreferenceDataset(max_size=None)
Bases: Dataset

A PyTorch Dataset for preference comparisons.

Each item is a tuple consisting of two trajectory fragments and a probability that fragment 1 is preferred over
fragment 2.

This dataset is meant to be generated piece by piece during the training process, which is why data can be added
via the .push() method.

__init__(max_size=None)
Builds an empty PreferenceDataset.

Parameters
max_size (Optional[int]) – Maximum number of preference comparisons to store in the
dataset. If None (default), the dataset can grow indefinitely. Otherwise, the dataset acts as a
FIFO queue, and the oldest comparisons are evicted when push() is called and the dataset is
at max capacity.

static load(path)

Return type
PreferenceDataset

push(fragments, preferences)
Add more samples to the dataset.

Parameters

• fragments (Sequence[Tuple[TrajectoryWithRew, TrajectoryWithRew]]) – list of
pairs of trajectory fragments to add

• preferences (ndarray) – corresponding preference probabilities (probability that frag-
ment 1 is preferred over fragment 2)

Raises
ValueError – preferences shape does not match fragments or has non-float32 dtype.

Return type
None

save(path)

Return type
None

class imitation.algorithms.preference_comparisons.PreferenceGatherer(rng=None,
custom_logger=None)

Bases: ABC

Base class for gathering preference comparisons between trajectory fragments.
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__init__(rng=None, custom_logger=None)
Initializes the preference gatherer.

Parameters

• rng (Optional[Generator]) – random number generator, if applicable.

• custom_logger (Optional[HierarchicalLogger]) – Where to log to; if None (de-
fault), creates a new logger.

class imitation.algorithms.preference_comparisons.PreferenceModel(model, noise_prob=0.0,
discount_factor=1.0,
threshold=50)

Bases: Module

Class to convert two fragments’ rewards into preference probability.

__init__(model, noise_prob=0.0, discount_factor=1.0, threshold=50)
Create Preference Prediction Model.

Parameters

• model (RewardNet) – base model to compute reward.

• noise_prob (float) – assumed probability with which the preference is uniformly ran-
dom (used for the model of preference generation that is used for the loss).

• discount_factor (float) – the model of preference generation uses a softmax of returns
as the probability that a fragment is preferred. This is the discount factor used to calculate
those returns. Default is 1, i.e. undiscounted sums of rewards (which is what the DRLHP
paper uses).

• threshold (float) – the preference model used to compute the loss contains a softmax
of returns. To avoid overflows, we clip differences in returns that are above this threshold.
This threshold is therefore in logspace. The default value of 50 means that probabilities
below 2e-22 are rounded up to 2e-22.

Raises
ValueError – if RewardEnsemble is wrapped around a class other than AddSTDReward-
Wrapper.

forward(fragment_pairs)
Computes the preference probability of the first fragment for all pairs.

Note: This function passes the gradient through for non-ensemble models.
For an ensemble model, this function should not be used for loss calculation. It can be used in case
where passing the gradient is not required such as during active selection or inference time. There-
fore, the EnsembleTrainer passes each member network through this function instead of passing the
EnsembleNetwork object with the use of ensemble_member_index.

Parameters
fragment_pairs (Sequence[Tuple[Trajectory, Trajectory]]) – batch of pair of frag-
ments.

Return type
Tuple[Tensor, Optional[Tensor]]

Returns
A tuple with the first element as the preference probabilities for the first fragment for all frag-
ment pairs given by the network(s). If the ground truth rewards are available, it also returns
gt preference probabilities in the second element of the tuple (else None). Reward probability
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shape - (num_fragment_pairs, ) for non-ensemble reward network and (num_fragment_pairs,
num_networks) for an ensemble of networks.

probability(rews1, rews2)
Computes the Boltzmann rational probability the first trajectory is best.

Parameters

• rews1 (Tensor) – array/matrix of rewards for the first trajectory fragment. matrix for
ensemble models and array for non-ensemble models.

• rews2 (Tensor) – array/matrix of rewards for the second trajectory fragment. matrix for
ensemble models and array for non-ensemble models.

Return type
Tensor

Returns
The softmax of the difference between the (discounted) return of the first and second trajec-
tory. Shape - (num_ensemble_members, ) for ensemble model and () for non-ensemble model
which is a torch scalar.

rewards(transitions)
Computes the reward for all transitions.

Parameters
transitions (Transitions) – batch of obs-act-obs-done for a fragment of a trajectory.

Return type
Tensor

Returns
The reward given by the network(s) for all the transitions. Shape - (num_transitions, ) for
Single reward network and (num_transitions, num_networks) for ensemble of networks.

training: bool

class imitation.algorithms.preference_comparisons.RandomFragmenter(rng, warning_threshold=10,
custom_logger=None)

Bases: Fragmenter

Sample fragments of trajectories uniformly at random with replacement.

Note that each fragment is part of a single episode and has a fixed length. This leads to a bias: transitions at the
beginning and at the end of episodes are less likely to occur as part of fragments (this affects the first and last
fragment_length transitions).

An additional bias is that trajectories shorter than the desired fragment length are never used.

__init__(rng, warning_threshold=10, custom_logger=None)
Initialize the fragmenter.

Parameters

• rng (Generator) – the random number generator

• warning_threshold (int) – give a warning if the number of available transitions is less
than this many times the number of required samples. Set to 0 to disable this warning.

• custom_logger (Optional[HierarchicalLogger]) – Where to log to; if None (de-
fault), creates a new logger.
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class imitation.algorithms.preference_comparisons.RewardLoss(*args, **kwargs)
Bases: Module, ABC

A loss function over preferences.

abstract forward(fragment_pairs, preferences, preference_model)
Computes the loss.

Parameters

• fragment_pairs (Sequence[Tuple[Trajectory, Trajectory]]) – Batch consisting of
pairs of trajectory fragments.

• preferences (ndarray) – The probability that the first fragment is preferred over the
second. Typically 0, 1 or 0.5 (tie).

• preference_model (PreferenceModel) – model to predict the preferred fragment from
a pair.

Returns: # noqa: DAR202
loss: the loss metrics: a dictionary of metrics that can be logged

Return type
LossAndMetrics

training: bool

class imitation.algorithms.preference_comparisons.RewardTrainer(preference_model,
custom_logger=None)

Bases: ABC

Abstract base class for training reward models using preference comparisons.

This class contains only the actual reward model training code, it is not responsible for gathering trajectories and
preferences or for agent training (see :class: PreferenceComparisons for that).

__init__(preference_model, custom_logger=None)
Initialize the reward trainer.

Parameters

• preference_model (PreferenceModel) – the preference model to train the reward net-
work.

• custom_logger (Optional[HierarchicalLogger]) – Where to log to; if None (de-
fault), creates a new logger.

property logger: HierarchicalLogger

Return type
HierarchicalLogger

train(dataset, epoch_multiplier=1.0)
Train the reward model on a batch of fragment pairs and preferences.

Parameters

• dataset (PreferenceDataset) – the dataset of preference comparisons to train on.

• epoch_multiplier (float) – how much longer to train for than usual (measured rela-
tively).
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Return type
None

class imitation.algorithms.preference_comparisons.SyntheticGatherer(temperature=1,
discount_factor=1,
sample=True, rng=None,
threshold=50,
custom_logger=None)

Bases: PreferenceGatherer

Computes synthetic preferences using ground-truth environment rewards.

__init__(temperature=1, discount_factor=1, sample=True, rng=None, threshold=50,
custom_logger=None)

Initialize the synthetic preference gatherer.

Parameters

• temperature (float) – the preferences are sampled from a softmax, this is the temper-
ature used for sampling. temperature=0 leads to deterministic results (for equal rewards,
0.5 will be returned).

• discount_factor (float) – discount factor that is used to compute how good a fragment
is. Default is to use undiscounted sums of rewards (as in the DRLHP paper).

• sample (bool) – if True (default), the preferences are 0 or 1, sampled from a Bernoulli
distribution (or 0.5 in the case of ties with zero temperature). If False, then the underlying
Bernoulli probabilities are returned instead.

• rng (Optional[Generator]) – random number generator, only used if temperature >
0 and sample=True

• threshold (float) – preferences are sampled from a softmax of returns. To avoid over-
flows, we clip differences in returns that are above this threshold (after multiplying with
temperature). This threshold is therefore in logspace. The default value of 50 means that
probabilities below 2e-22 are rounded up to 2e-22.

• custom_logger (Optional[HierarchicalLogger]) – Where to log to; if None (de-
fault), creates a new logger.

Raises
ValueError – if sample is true and no random state is provided.

class imitation.algorithms.preference_comparisons.TrajectoryDataset(trajectories, rng,
custom_logger=None)

Bases: TrajectoryGenerator

A fixed dataset of trajectories.

__init__(trajectories, rng, custom_logger=None)
Creates a dataset loaded from path.

Parameters

• trajectories (Sequence[TrajectoryWithRew]) – the dataset of rollouts.

• rng (Generator) – RNG used for shuffling dataset.

• custom_logger (Optional[HierarchicalLogger]) – Where to log to; if None (de-
fault), creates a new logger.
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sample(steps)
Sample a batch of trajectories.

Parameters
steps (int) – All trajectories taken together should have at least this many steps.

Return type
Sequence[TrajectoryWithRew]

Returns
A list of sampled trajectories with rewards (which should be the environment rewards, not
ones from a reward model).

class imitation.algorithms.preference_comparisons.TrajectoryGenerator(custom_logger=None)
Bases: ABC

Generator of trajectories with optional training logic.

__init__(custom_logger=None)
Builds TrajectoryGenerator.

Parameters
custom_logger (Optional[HierarchicalLogger]) – Where to log to; if None (default),
creates a new logger.

property logger: HierarchicalLogger

Return type
HierarchicalLogger

abstract sample(steps)
Sample a batch of trajectories.

Parameters
steps (int) – All trajectories taken together should have at least this many steps.

Return type
Sequence[TrajectoryWithRew]

Returns
A list of sampled trajectories with rewards (which should be the environment rewards, not
ones from a reward model).

train(steps, **kwargs)
Train an agent if the trajectory generator uses one.

By default, this method does nothing and doesn’t need to be overridden in subclasses that don’t require
training.

Parameters

• steps (int) – number of environment steps to train for.

• **kwargs – additional keyword arguments to pass on to the training procedure.

Return type
None

imitation.algorithms.preference_comparisons.get_base_model(reward_model)

Return type
RewardNet
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imitation.algorithms.preference_comparisons.preference_collate_fn(batch)

Return type
Tuple[Sequence[Tuple[TrajectoryWithRew, TrajectoryWithRew]], ndarray]

3.1.2 imitation.data

Modules handling environment data.

For example: types for transitions/trajectories; methods to compute rollouts; buffers to store transitions; helpers for
these modules.

Modules

imitation.data.buffer Buffers to store NumPy arrays and transitions in.
imitation.data.huggingface_utils Helpers to convert between Trajectories and Hugging-

Face's datasets library.
imitation.data.rollout Methods to collect, analyze and manipulate transition

and trajectory rollouts.
imitation.data.serialize Serialization utilities for trajectories.
imitation.data.types Types and helper methods for transitions and trajecto-

ries.
imitation.data.wrappers Environment wrappers for collecting rollouts.

imitation.data.buffer

Buffers to store NumPy arrays and transitions in.

Functions

num_samples(data) Computes the number of samples contained in data.

Classes

Buffer(capacity, sample_shapes, dtypes) A FIFO ring buffer for NumPy arrays of a fixed shape
and dtype.

ReplayBuffer(capacity[, venv, obs_shape, ...]) Buffer for Transitions.

class imitation.data.buffer.Buffer(capacity, sample_shapes, dtypes)
Bases: object

A FIFO ring buffer for NumPy arrays of a fixed shape and dtype.

Supports random sampling with replacement.

__init__(capacity, sample_shapes, dtypes)
Constructs a Buffer.

Parameters
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• capacity (int) – The number of samples that can be stored.

• sample_shapes (Mapping[str, Tuple[int, ...]]) – A dictionary mapping string keys
to the shape of samples associated with that key.

• dtypes (np.dtype-like) – A dictionary mapping string keys to the dtype of samples asso-
ciated with that key.

Raises
KeyError – sample_shapes and dtypes have different keys.

capacity: int

The number of data samples that can be stored in this buffer.

classmethod from_data(data, capacity=None, truncate_ok=False)
Constructs and return a Buffer containing the provided data.

Shapes and dtypes are automatically inferred.

Parameters

• data (Mapping[str, ndarray]) – A dictionary mapping keys to data arrays. The arrays
may differ in their shape, but should agree in the first axis.

• capacity (Optional[int]) – The Buffer capacity. If not provided, then this is automati-
cally set to the size of the data, so that the returned Buffer is at full capacity.

• truncate_ok (bool) – Whether to error if capacity < the number of samples in data. If
False, then only store the last capacity samples from data when overcapacity.

Examples

In the follow examples, suppose the arrays in data are length-1000.

Buffer with same capacity as arrays in data:

Buffer.from_data(data)

Buffer with larger capacity than arrays in data:

Buffer.from_data(data, 10000)

Buffer with smaller capacity than arrays in `data. Without truncate_ok=True, from_data will error:

Buffer.from_data(data, 5, truncate_ok=True)

Return type
Buffer

Returns
Buffer of specified capacity containing provided data.

Raises

• ValueError – data is empty.

• ValueError – data has items mapping to arrays differing in the length of their first axis.
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sample(n_samples)
Uniformly sample n_samples samples from the buffer with replacement.

Parameters
n_samples (int) – The number of samples to randomly sample.

Returns

An array with shape
(n_samples) + self.sample_shape.

Return type
samples (np.ndarray)

Raises
ValueError – The buffer is empty.

sample_shapes: Mapping[str, Tuple[int, ...]]

The shapes of each data sample stored in this buffer.

size()

Returns the number of samples stored in the buffer.

Return type
int

store(data, truncate_ok=False)
Stores new data samples, replacing old samples with FIFO priority.

Parameters

• data (Mapping[str, ndarray]) – A dictionary mapping keys k to arrays with shape
(n_samples,) + self.sample_shapes[k], where n_samples is less than or equal to
self.capacity.

• truncate_ok (bool) – If False, then error if the length of transitions is greater than
self.capacity. Otherwise, store only the final self.capacity transitions.

Raises

• ValueError – data is empty.

• ValueError – If n_samples is greater than self.capacity.

• ValueError – data is the wrong shape.

Return type
None

class imitation.data.buffer.ReplayBuffer(capacity, venv=None, *, obs_shape=None, act_shape=None,
obs_dtype=None, act_dtype=None)

Bases: object

Buffer for Transitions.

__init__(capacity, venv=None, *, obs_shape=None, act_shape=None, obs_dtype=None, act_dtype=None)
Constructs a ReplayBuffer.

Parameters

• capacity (int) – The number of samples that can be stored.
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• venv (Optional[VecEnv]) – The environment whose action and observation spaces can
be used to determine the data shapes of the underlying buffers. Mutually exclusive with
shape and dtype arguments.

• obs_shape (Optional[Tuple[int, ...]]) – The shape of the observation space.

• act_shape (Optional[Tuple[int, ...]]) – The shape of the action space.

• obs_dtype (Optional[dtype]) – The dtype of the observation space.

• act_dtype (Optional[dtype]) – The dtype of the action space.

Raises

• ValueError – Couldn’t infer the observation and action shapes and dtypes from the argu-
ments.

• ValueError – Specified both venv and shapes/dtypes.

capacity: int

The number of data samples that can be stored in this buffer.

classmethod from_data(transitions, capacity=None, truncate_ok=False)
Construct and return a ReplayBuffer containing the provided data.

Shapes and dtypes are automatically inferred, and the returned ReplayBuffer is ready for sampling.

Parameters

• transitions (Transitions) – Transitions to store.

• capacity (Optional[int]) – The ReplayBuffer capacity. If not provided, then this is
automatically set to the size of the data, so that the returned Buffer is at full capacity.

• truncate_ok (bool) – Whether to error if capacity < the number of samples in data. If
False, then only store the last capacity samples from data when overcapacity.

Examples

ReplayBuffer with same capacity as arrays in data:

ReplayBuffer.from_data(data)

ReplayBuffer with larger capacity than arrays in data:

ReplayBuffer.from_data(data, 10000)

ReplayBuffer with smaller capacity than arrays in `data. Without truncate_ok=True, from_data will error:

ReplayBuffer.from_data(data, 5, truncate_ok=True)

Return type
ReplayBuffer

Returns
A new ReplayBuffer.
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sample(n_samples)
Sample obs-act-obs triples.

Parameters
n_samples (int) – The number of samples.

Return type
Transitions

Returns
A Transitions named tuple containing n_samples transitions.

size()

Returns the number of samples stored in the buffer.

Return type
Optional[int]

store(transitions, truncate_ok=True)
Store obs-act-obs triples.

Parameters

• transitions (Transitions) – Transitions to store.

• truncate_ok (bool) – If False, then error if the length of transitions is greater than
self.capacity. Otherwise, store only the final self.capacity transitions.

Raises
ValueError – The arguments didn’t have the same length.

Return type
None

imitation.data.buffer.num_samples(data)
Computes the number of samples contained in data.

Parameters
data (Mapping[Any, ndarray]) – A Mapping from keys to NumPy arrays.

Return type
int

Returns
The unique length of the first dimension of arrays contained in data.

Raises
ValueError – The length is not unique.

imitation.data.huggingface_utils

Helpers to convert between Trajectories and HuggingFace’s datasets library.
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Functions

trajectories_to_dataset(trajectories[, info]) Convert a sequence of trajectories to a HuggingFace
dataset.

trajectories_to_dict(trajectories) Convert a sequence of trajectories to a dict.

Classes

TrajectoryDatasetSequence(dataset) A wrapper to present an HF dataset as a sequence of tra-
jectories.

class imitation.data.huggingface_utils.TrajectoryDatasetSequence(dataset)
Bases: Sequence[Trajectory]

A wrapper to present an HF dataset as a sequence of trajectories.

Converts the dataset to a sequence of trajectories on the fly.

__init__(dataset)
Construct a TrajectoryDatasetSequence.

property dataset

Return the underlying HF dataset.

imitation.data.huggingface_utils.trajectories_to_dataset(trajectories, info=None)
Convert a sequence of trajectories to a HuggingFace dataset.

Return type
Dataset

imitation.data.huggingface_utils.trajectories_to_dict(trajectories)
Convert a sequence of trajectories to a dict.

The dict has the following fields:

• obs: The observations. Shape: (num_trajectories, num_timesteps, obs_dim).

• acts: The actions. Shape: (num_trajectories, num_timesteps, act_dim).

• infos: The infos. Shape: (num_trajectories, num_timesteps) as jsonpickled str.

• terminal: The terminal flags. Shape: (num_trajectories, num_timesteps, ).

• rews: The rewards. Shape: (num_trajectories, num_timesteps) if applicable.

This dict can be used to construct a HuggingFace dataset.

Parameters
trajectories (Sequence[Trajectory]) – The trajectories to save.

Raises
ValueError – If not all trajectories have the same type, i.e. some are Trajectory and others are
TrajectoryWithRew.

Return type
Dict[str, Sequence[Any]]

Returns
A dict representing the trajectories.
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imitation.data.rollout

Methods to collect, analyze and manipulate transition and trajectory rollouts.

Functions

discounted_sum(arr, gamma) Calculate the discounted sum of arr.
flatten_trajectories(trajectories) Flatten a series of trajectory dictionaries into arrays.
flatten_trajectories_with_rew(trajectories)

rtype
TransitionsWithRew

generate_trajectories(policy, venv, ...[, ...]) Generate trajectory dictionaries from a policy and an en-
vironment.

generate_transitions(policy, venv, ...[, ...]) Generate obs-action-next_obs-reward tuples.
make_min_episodes(n) Terminate after collecting n episodes of data.
make_min_timesteps(n) Terminate at the first episode after collecting n timesteps

of data.
make_sample_until([min_timesteps, min_episodes]) Returns a termination condition sampling for a number

of timesteps and episodes.
policy_to_callable(policy, venv[, ...]) Converts any policy-like object into a function from ob-

servations to actions.
rollout(policy, venv, sample_until, rng, *) Generate policy rollouts.
rollout_stats(trajectories) Calculates various stats for a sequence of trajectories.
unwrap_traj(traj) Uses RolloutInfoWrapper-captured obs and rews to re-

place fields.

Classes

TrajectoryAccumulator() Accumulates trajectories step-by-step.

class imitation.data.rollout.TrajectoryAccumulator

Bases: object

Accumulates trajectories step-by-step.

Useful for collecting completed trajectories while ignoring partially-completed trajectories (e.g. when rolling
out a VecEnv to collect a set number of transitions). Each in-progress trajectory is identified by a ‘key’, which
enables several independent trajectories to be collected at once. They key can also be left at its default value of
None if you only wish to collect one trajectory.

__init__()

Initialise the trajectory accumulator.

add_step(step_dict, key=None)
Add a single step to the partial trajectory identified by key.

Generally a single step could correspond to, e.g., one environment managed by a VecEnv.

Parameters
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• step_dict (Mapping[str, Union[ndarray, Mapping[str, Any]]]) – dictionary contain-
ing information for the current step. Its keys could include any (or all) attributes of a Tra-
jectoryWithRew (e.g. “obs”, “acts”, etc.).

• key (Optional[Hashable]) – key to uniquely identify the trajectory to append to, if work-
ing with multiple partial trajectories.

Return type
None

add_steps_and_auto_finish(acts, obs, rews, dones, infos)
Calls add_step repeatedly using acts and the returns from venv.step.

Also automatically calls finish_trajectory() for each done == True. Before calling this method, each envi-
ronment index key needs to be initialized with the initial observation (usually from venv.reset()).

See the body of util.rollout.generate_trajectory for an example.

Parameters

• acts (ndarray) – Actions passed into VecEnv.step().

• obs (ndarray) – Return value from VecEnv.step(acts).

• rews (ndarray) – Return value from VecEnv.step(acts).

• dones (ndarray) – Return value from VecEnv.step(acts).

• infos (List[dict]) – Return value from VecEnv.step(acts).

Return type
List[TrajectoryWithRew]

Returns
A list of completed trajectories. There should be one trajectory for each True in the dones
argument.

finish_trajectory(key, terminal)
Complete the trajectory labelled with key.

Parameters

• key (Hashable) – key uniquely identifying which in-progress trajectory to remove.

• terminal (bool) – trajectory has naturally finished (i.e. includes terminal state).

Returns

list of completed trajectories popped from
self.partial_trajectories.

Return type
traj

imitation.data.rollout.discounted_sum(arr, gamma)
Calculate the discounted sum of arr.

If arr is an array of rewards, then this computes the return; however, it can also be used to e.g. compute discounted
state occupancy measures.

Parameters

• arr (ndarray) – 1 or 2-dimensional array to compute discounted sum over. Last axis is
timestep, from current time step (first) to last timestep (last). First axis (if present) is batch
dimension.
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• gamma (float) – the discount factor used.

Return type
Union[ndarray, float]

Returns
The discounted sum over the timestep axis. The first timestep is undiscounted, i.e. we start at
gamma^0.

imitation.data.rollout.flatten_trajectories(trajectories)
Flatten a series of trajectory dictionaries into arrays.

Parameters
trajectories (Sequence[Trajectory]) – list of trajectories.

Return type
Transitions

Returns
The trajectories flattened into a single batch of Transitions.

imitation.data.rollout.flatten_trajectories_with_rew(trajectories)

Return type
TransitionsWithRew

imitation.data.rollout.generate_trajectories(policy, venv, sample_until, rng, *,
deterministic_policy=False)

Generate trajectory dictionaries from a policy and an environment.

Parameters

• policy (Union[BaseAlgorithm, BasePolicy, Callable[[ndarray,
Optional[Tuple[ndarray, ...]], Optional[ndarray]], Tuple[ndarray,
Optional[Tuple[ndarray, ...]]]], None]) – Can be any of the following: 1) A sta-
ble_baselines3 policy or algorithm trained on the gym environment. 2) A Callable that
takes an ndarray of observations and returns an ndarray of corresponding actions. 3) None,
in which case actions will be sampled randomly.

• venv (VecEnv) – The vectorized environments to interact with.

• sample_until (Callable[[Sequence[TrajectoryWithRew]], bool]) – A function de-
termining the termination condition. It takes a sequence of trajectories, and returns a bool.
Most users will want to use one of min_episodes or min_timesteps.

• deterministic_policy (bool) – If True, asks policy to deterministically return ac-
tion. Note the trajectories might still be non-deterministic if the environment has non-
determinism!

• rng (Generator) – used for shuffling trajectories.

Return type
Sequence[TrajectoryWithRew]

Returns
Sequence of trajectories, satisfying sample_until. Additional trajectories may be collected to
avoid biasing process towards short episodes; the user should truncate if required.

imitation.data.rollout.generate_transitions(policy, venv, n_timesteps, rng, *, truncate=True,
**kwargs)

Generate obs-action-next_obs-reward tuples.
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Parameters

• policy (Union[BaseAlgorithm, BasePolicy, Callable[[ndarray,
Optional[Tuple[ndarray, ...]], Optional[ndarray]], Tuple[ndarray,
Optional[Tuple[ndarray, ...]]]], None]) – Can be any of the following: - A sta-
ble_baselines3 policy or algorithm trained on the gym environment - A Callable that takes
an ndarray of observations and returns an ndarray of corresponding actions - None, in which
case actions will be sampled randomly

• venv (VecEnv) – The vectorized environments to interact with.

• n_timesteps (int) – The minimum number of timesteps to sample.

• rng (Generator) – The random state to use for sampling trajectories.

• truncate (bool) – If True, then drop any additional samples to ensure that exactly
n_timesteps samples are returned.

• **kwargs – Passed-through to generate_trajectories.

Return type
TransitionsWithRew

Returns
A batch of Transitions. The length of the constituent arrays is guaranteed to be at least n_timesteps
(if specified), but may be greater unless truncate is provided as we collect data until the end of
each episode.

imitation.data.rollout.make_min_episodes(n)
Terminate after collecting n episodes of data.

Parameters
n (int) – Minimum number of episodes of data to collect. May overshoot if two episodes com-
plete simultaneously (unlikely).

Return type
Callable[[Sequence[TrajectoryWithRew]], bool]

Returns
A function implementing this termination condition.

imitation.data.rollout.make_min_timesteps(n)
Terminate at the first episode after collecting n timesteps of data.

Parameters
n (int) – Minimum number of timesteps of data to collect. May overshoot to nearest episode
boundary.

Return type
Callable[[Sequence[TrajectoryWithRew]], bool]

Returns
A function implementing this termination condition.

imitation.data.rollout.make_sample_until(min_timesteps=None, min_episodes=None)
Returns a termination condition sampling for a number of timesteps and episodes.

Parameters

• min_timesteps (Optional[int]) – Sampling will not stop until there are at least this many
timesteps.
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• min_episodes (Optional[int]) – Sampling will not stop until there are at least this many
episodes.

Return type
Callable[[Sequence[TrajectoryWithRew]], bool]

Returns
A termination condition.

Raises
ValueError – Neither of n_timesteps and n_episodes are set, or either are non-positive.

imitation.data.rollout.policy_to_callable(policy, venv, deterministic_policy=False)
Converts any policy-like object into a function from observations to actions.

Return type
Callable[[ndarray, Optional[Tuple[ndarray, ...]], Optional[ndarray]],
Tuple[ndarray, Optional[Tuple[ndarray, ...]]]]

imitation.data.rollout.rollout(policy, venv, sample_until, rng, *, unwrap=True, exclude_infos=True,
verbose=True, **kwargs)

Generate policy rollouts.

This method is a wrapper of generate_trajectories that allows the user to additionally replace the rewards and
observations with the original values if the environment is wrapped, to exclude the infos from the trajectories,
and to print summary statistics of the rollout.

The .infos field of each Trajectory is set to None to save space.

Parameters

• policy (Union[BaseAlgorithm, BasePolicy, Callable[[ndarray,
Optional[Tuple[ndarray, ...]], Optional[ndarray]], Tuple[ndarray,
Optional[Tuple[ndarray, ...]]]], None]) – Can be any of the following: 1) A sta-
ble_baselines3 policy or algorithm trained on the gym environment. 2) A Callable that
takes an ndarray of observations and returns an ndarray of corresponding actions. 3) None,
in which case actions will be sampled randomly.

• venv (VecEnv) – The vectorized environments.

• sample_until (Callable[[Sequence[TrajectoryWithRew]], bool]) – End condition
for rollout sampling.

• rng (Generator) – Random state to use for sampling.

• unwrap (bool) – If True, then save original observations and rewards (instead of potentially
wrapped observations and rewards) by calling unwrap_traj().

• exclude_infos (bool) – If True, then exclude infos from pickle by setting this field to
None. Excluding infos can save a lot of space during pickles.

• verbose (bool) – If True, then print out rollout stats before saving.

• **kwargs – Passed through to generate_trajectories.

Return type
Sequence[TrajectoryWithRew]

Returns
Sequence of trajectories, satisfying sample_until. Additional trajectories may be collected to
avoid biasing process towards short episodes; the user should truncate if required.
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imitation.data.rollout.rollout_stats(trajectories)
Calculates various stats for a sequence of trajectories.

Parameters
trajectories (Sequence[TrajectoryWithRew]) – Sequence of trajectories.

Return type
Mapping[str, float]

Returns

Dictionary containing n_traj collected (int), along with episode return statistics (keys:
{monitor_,}return_{min,mean,std,max}, float values) and trajectory length statistics (keys:
len_{min,mean,std,max}, float values).

return_* values are calculated from environment rewards. monitor_* values are calculated from
Monitor-captured rewards, and are only included if the trajectories contain Monitor infos.

imitation.data.rollout.unwrap_traj(traj)
Uses RolloutInfoWrapper-captured obs and rews to replace fields.

This can be useful for bypassing other wrappers to retrieve the original obs and rews.

Fails if infos is None or if the trajectory was generated from an environment without imita-
tion.data.wrappers.RolloutInfoWrapper

Parameters
traj (TrajectoryWithRew) – A trajectory generated from RolloutInfoWrapper-wrapped En-
vironments.

Return type
TrajectoryWithRew

Returns
A copy of traj with replaced obs and rews fields.

Raises
ValueError – If traj.infos is None

imitation.data.serialize

Serialization utilities for trajectories.

Functions

load(path) Loads a sequence of trajectories saved by save() from
path.

load_with_rewards(path) Loads a sequence of trajectories with rewards from a file.
save(path, trajectories) Save a sequence of Trajectories to disk using Hugging-

Face's datasets library.

imitation.data.serialize.load(path)
Loads a sequence of trajectories saved by save() from path.

Return type
Sequence[Trajectory]
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imitation.data.serialize.load_with_rewards(path)
Loads a sequence of trajectories with rewards from a file.

Return type
Sequence[TrajectoryWithRew]

imitation.data.serialize.save(path, trajectories)
Save a sequence of Trajectories to disk using HuggingFace’s datasets library.

Parameters

• path (Union[str, bytes, PathLike]) – Trajectories are saved to this path.

• trajectories (Sequence[Trajectory]) – The trajectories to save.

Return type
None

imitation.data.types

Types and helper methods for transitions and trajectories.

Functions

dataclass_quick_asdict(obj) Extract dataclass to items using dataclasses.fields + dict
comprehension.

transitions_collate_fn(batch) Custom torch.utils.data.DataLoader collate_fn for
TransitionsMinimal.

Classes

Trajectory(obs, acts, infos, terminal) A trajectory, e.g.
TrajectoryWithRew(obs, acts, infos, ...) A Trajectory that additionally includes reward informa-

tion.
Transitions(obs, acts, infos, next_obs, dones) A batch of obs-act-obs-done transitions.
TransitionsMinimal(obs, acts, infos) A Torch-compatible Dataset of obs-act transitions.
TransitionsWithRew(obs, acts, infos, ...) A batch of obs-act-obs-rew-done transitions.

class imitation.data.types.Trajectory(obs, acts, infos, terminal)
Bases: object

A trajectory, e.g. a one episode rollout from an expert policy.

__init__(obs, acts, infos, terminal)

acts: ndarray

Actions, shape (trajectory_len, ) + action_shape.

infos: Optional[ndarray]

An array of info dicts, shape (trajectory_len, ).

The info dict is returned by some environments step() and contains auxiliary diagnostic information. For
example the monitor wrapper adds an info dict to the last step of each episode containing the episode return
and length.
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obs: ndarray

Observations, shape (trajectory_len + 1, ) + observation_shape.

terminal: bool

Does this trajectory (fragment) end in a terminal state?

Episodes are always terminal. Trajectory fragments are also terminal when they contain the final state of
an episode (even if missing the start of the episode).

class imitation.data.types.TrajectoryWithRew(obs, acts, infos, terminal, rews)
Bases: Trajectory

A Trajectory that additionally includes reward information.

__init__(obs, acts, infos, terminal, rews)

rews: ndarray

Reward, shape (trajectory_len, ). dtype float.

class imitation.data.types.Transitions(obs, acts, infos, next_obs, dones)
Bases: TransitionsMinimal

A batch of obs-act-obs-done transitions.

__init__(obs, acts, infos, next_obs, dones)

dones: ndarray

(batch_size, ).

done[i] is true iff next_obs[i] the last observation of an episode.

Type
Boolean array indicating episode termination. Shape

next_obs: ndarray

(batch_size, ) + observation_shape.

The i’th observation next_obs[i] in this array is the observation after the agent has taken action acts[i].

Invariants:

• next_obs.dtype == obs.dtype

• len(next_obs) == len(obs)

Type
New observation. Shape

class imitation.data.types.TransitionsMinimal(obs, acts, infos)
Bases: Dataset, Sequence[Mapping[str, ndarray]]

A Torch-compatible Dataset of obs-act transitions.

This class and its subclasses are usually instantiated via imitation.data.rollout.flatten_trajectories.

Indexing an instance trans of TransitionsMinimal with an integer i returns the i`th `Dict[str, np.ndarray] sample,
whose keys are the field names of each dataclass field and whose values are the ith elements of each field value.

Slicing returns a possibly empty instance of TransitionsMinimal where each field has been sliced.

__init__(obs, acts, infos)
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acts: ndarray

(batch_size,) + action_shape.

Type
Actions. Shape

infos: ndarray

(batch_size,).

Type
Array of info dicts. Shape

obs: ndarray

(batch_size, ) + observation_shape.

The i’th observation obs[i] in this array is the observation seen by the agent when choosing action acts[i].
obs[i] is not required to be from the timestep preceding obs[i+1].

Type
Previous observations. Shape

class imitation.data.types.TransitionsWithRew(obs, acts, infos, next_obs, dones, rews)
Bases: Transitions

A batch of obs-act-obs-rew-done transitions.

__init__(obs, acts, infos, next_obs, dones, rews)

rews: ndarray

(batch_size, ). dtype float.

The reward rew[i] at the i’th timestep is received after the agent has taken action acts[i].

Type
Reward. Shape

imitation.data.types.dataclass_quick_asdict(obj)
Extract dataclass to items using dataclasses.fields + dict comprehension.

This is a quick alternative to dataclasses.asdict, which expensively and undocumentedly deep-copies every
numpy array value. See https://stackoverflow.com/a/52229565/1091722.

Parameters
obj – A dataclass instance.

Return type
Dict[str, Any]

Returns
A dictionary mapping from obj field names to values.

imitation.data.types.transitions_collate_fn(batch)
Custom torch.utils.data.DataLoader collate_fn for TransitionsMinimal.

Use this as the collate_fn argument to DataLoader if using an instance of TransitionsMinimal as the dataset
argument.

Parameters
batch (Sequence[Mapping[str, ndarray]]) – The batch to collate.

Return type
Mapping[str, Union[ndarray, Tensor]]

3.1. imitation 171

https://stackoverflow.com/a/52229565/1091722


imitation

Returns
A collated batch. Uses Torch’s default collate function for everything except the “infos” key. For
“infos”, we join all the info dicts into a list of dicts. (The default behavior would recursively
collate every info dict into a single dict, which is incorrect.)

imitation.data.wrappers

Environment wrappers for collecting rollouts.

Classes

BufferingWrapper(venv[, ...]) Saves transitions of underlying VecEnv.
RolloutInfoWrapper(env) Add the entire episode's rewards and observations to info

at episode end.

class imitation.data.wrappers.BufferingWrapper(venv, error_on_premature_reset=True)
Bases: VecEnvWrapper

Saves transitions of underlying VecEnv.

Retrieve saved transitions using pop_transitions().

__init__(venv, error_on_premature_reset=True)
Builds BufferingWrapper.

Parameters

• venv (VecEnv) – The wrapped VecEnv.

• error_on_premature_reset (bool) – Error if reset() is called on this wrapper and there
are saved samples that haven’t yet been accessed.

error_on_premature_event: bool

n_transitions: Optional[int]

pop_finished_trajectories()

Pops recorded complete trajectories trajs and episode lengths ep_lens.

Return type
Tuple[Sequence[TrajectoryWithRew], Sequence[int]]

Returns
A tuple (trajs, ep_lens) where trajs is a sequence of trajectories including the terminal state
(but possibly missing initial states, if pop_trajectories was previously called) and ep_lens is a
sequence of episode lengths. Note the episode length will be longer than the trajectory length
when the trajectory misses initial states.

pop_trajectories()

Pops recorded trajectories trajs and episode lengths ep_lens.

Return type
Tuple[Sequence[TrajectoryWithRew], Sequence[int]]

Returns
A tuple (trajs, ep_lens). trajs is a sequence of trajectory fragments, consisting of data col-
lected after the last call to pop_trajectories. They may miss initial states (if pop_trajectories
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previously returned a fragment for that episode), and terminal states (if the episode has yet to
complete). ep_lens is the total length of completed episodes.

pop_transitions()

Pops recorded transitions, returning them as an instance of Transitions.

Return type
TransitionsWithRew

Returns
All transitions recorded since the last call.

Raises
RuntimeError – empty (no transitions recorded since last pop).

reset(**kwargs)
Reset all the environments and return an array of observations, or a tuple of observation arrays.

If step_async is still doing work, that work will be cancelled and step_wait() should not be called until
step_async() is invoked again.

Returns
observation

step_async(actions)
Tell all the environments to start taking a step with the given actions. Call step_wait() to get the results of
the step.

You should not call this if a step_async run is already pending.

step_wait()

Wait for the step taken with step_async().

Returns
observation, reward, done, information

class imitation.data.wrappers.RolloutInfoWrapper(env)
Bases: Wrapper

Add the entire episode’s rewards and observations to info at episode end.

Whenever done=True, info[“rollouts”] is a dict with keys “obs” and “rews”, whose corresponding values hold
the NumPy arrays containing the raw observations and rewards seen during this episode.

__init__(env)
Builds RolloutInfoWrapper.

Parameters
env (Env) – Environment to wrap.

reset(**kwargs)
Resets the environment to an initial state and returns an initial observation.

Note that this function should not reset the environment’s random number generator(s); random variables
in the environment’s state should be sampled independently between multiple calls to reset(). In other
words, each call of reset() should yield an environment suitable for a new episode, independent of previous
episodes.

Returns
the initial observation.
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Return type
observation (object)

step(action)
Run one timestep of the environment’s dynamics. When end of episode is reached, you are responsible for
calling reset() to reset this environment’s state.

Accepts an action and returns a tuple (observation, reward, done, info).

Parameters
action (object) – an action provided by the agent

Returns
agent’s observation of the current environment reward (float) : amount of reward returned
after previous action done (bool): whether the episode has ended, in which case further step()
calls will return undefined results info (dict): contains auxiliary diagnostic information (help-
ful for debugging, and sometimes learning)

Return type
observation (object)

3.1.3 imitation.policies

Classes defining policies and methods to manipulate them (e.g. serialization).

Modules

imitation.policies.base Custom policy classes and convenience methods.
imitation.policies.exploration_wrapper Wrapper to turn a policy into a more exploratory version.
imitation.policies.replay_buffer_wrapper Wrapper for reward labeling for transitions sampled

from a replay buffer.
imitation.policies.serialize Load serialized policies of different types.

imitation.policies.base

Custom policy classes and convenience methods.

Classes

FeedForward32Policy(*args, **kwargs) A feed forward policy network with two hidden layers of
32 units.

HardCodedPolicy(observation_space, action_space) Abstract class for hard-coded (non-trainable) policies.
NormalizeFeaturesExtractor(observation_space) Feature extractor that flattens then normalizes input.
RandomPolicy(observation_space, action_space) Returns random actions.
SAC1024Policy(*args, **kwargs) Actor and value networks with two hidden layers of 1024

units respectively.
ZeroPolicy(observation_space, action_space) Returns constant zero action.
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class imitation.policies.base.FeedForward32Policy(*args, **kwargs)
Bases: ActorCriticPolicy

A feed forward policy network with two hidden layers of 32 units.

This matches the IRL policies in the original AIRL paper.

Note: This differs from stable_baselines3 ActorCriticPolicy in two ways: by having 32 rather than 64 units, and
by having policy and value networks share weights except at the final layer, where there are different linear heads.

__init__(*args, **kwargs)
Builds FeedForward32Policy; arguments passed to ActorCriticPolicy.

training: bool

class imitation.policies.base.HardCodedPolicy(observation_space, action_space)
Bases: BasePolicy, ABC

Abstract class for hard-coded (non-trainable) policies.

__init__(observation_space, action_space)
Builds HardcodedPolicy with specified observation and action space.

forward(*args)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks while
the latter silently ignores them.

training: bool

class imitation.policies.base.NormalizeFeaturesExtractor(observation_space,
normalize_class=<class
'imitation.util.networks.RunningNorm'>)

Bases: FlattenExtractor

Feature extractor that flattens then normalizes input.

__init__(observation_space, normalize_class=<class 'imitation.util.networks.RunningNorm'>)
Builds NormalizeFeaturesExtractor.

Parameters

• observation_space (Space) – The space observations lie in.

• normalize_class (Type[Module]) – The class to use to normalize observations (after
being flattened). This can be any Module that preserves the shape; e.g. nn.BatchNorm* or
nn.LayerNorm.

forward(observations)
Defines the computation performed at every call.

Should be overridden by all subclasses.
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Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks while
the latter silently ignores them.

Return type
Tensor

training: bool

class imitation.policies.base.RandomPolicy(observation_space, action_space)
Bases: HardCodedPolicy

Returns random actions.

optimizer: th.optim.Optimizer

training: bool

class imitation.policies.base.SAC1024Policy(*args, **kwargs)
Bases: SACPolicy

Actor and value networks with two hidden layers of 1024 units respectively.

This matches the implementation of SAC policies in the PEBBLE paper. See: https://arxiv.org/pdf/2106.05091.
pdf https://github.com/denisyarats/pytorch_sac/blob/master/config/agent/sac.yaml

Note: This differs from stable_baselines3 SACPolicy by having 1024 hidden units in each layer instead of the
default value of 256.

__init__(*args, **kwargs)
Builds SAC1024Policy; arguments passed to SACPolicy.

training: bool

class imitation.policies.base.ZeroPolicy(observation_space, action_space)
Bases: HardCodedPolicy

Returns constant zero action.

optimizer: th.optim.Optimizer

training: bool

imitation.policies.exploration_wrapper

Wrapper to turn a policy into a more exploratory version.
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Classes

ExplorationWrapper(policy, venv, ...[, ...]) Wraps a PolicyCallable to create a partially randomized
version.

class imitation.policies.exploration_wrapper.ExplorationWrapper(policy, venv, random_prob,
switch_prob, rng,
deterministic_policy=False)

Bases: object

Wraps a PolicyCallable to create a partially randomized version.

This wrapper randomly switches between two policies: the wrapped policy, and a random one. After each action,
the current policy is kept with a certain probability. Otherwise, one of these two policies is chosen at random
(without any dependence on what the current policy is).

The random policy uses the action_space.sample() method.

__init__(policy, venv, random_prob, switch_prob, rng, deterministic_policy=False)
Initializes the ExplorationWrapper.

Parameters

• policy (Union[BaseAlgorithm, BasePolicy, Callable[[ndarray,
Optional[Tuple[ndarray, ...]], Optional[ndarray]], Tuple[ndarray,
Optional[Tuple[ndarray, ...]]]], None]) – The policy to randomize.

• venv (VecEnv) – The environment to use (needed for sampling random actions).

• random_prob (float) – The probability of picking the random policy when switching.

• switch_prob (float) – The probability of switching away from the current policy.

• rng (Generator) – The random state to use for seeding the environment and for switching
policies.

• deterministic_policy (bool) – Whether to make the policy deterministic when not
exploring. This must be False when policy is a PolicyCallable.

imitation.policies.replay_buffer_wrapper

Wrapper for reward labeling for transitions sampled from a replay buffer.

Classes

ReplayBufferRewardWrapper(buffer_size, ...) Relabel the rewards in transitions sampled from a Re-
playBuffer.

class imitation.policies.replay_buffer_wrapper.ReplayBufferRewardWrapper(buffer_size,
observation_space,
action_space, *,
replay_buffer_class,
reward_fn,
**kwargs)
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Bases: ReplayBuffer

Relabel the rewards in transitions sampled from a ReplayBuffer.

__init__(buffer_size, observation_space, action_space, *, replay_buffer_class, reward_fn, **kwargs)
Builds ReplayBufferRewardWrapper.

Parameters

• buffer_size (int) – Max number of elements in the buffer

• observation_space (Space) – Observation space

• action_space (Space) – Action space

• replay_buffer_class (Type[ReplayBuffer]) – Class of the replay buffer.

• reward_fn (RewardFn) – Reward function for reward relabeling.

• **kwargs – keyword arguments for ReplayBuffer.

add(*args, **kwargs)
Add elements to the buffer.

property full: bool

Return type
bool

property pos: int

Return type
int

sample(*args, **kwargs)
Sample elements from the replay buffer. Custom sampling when using memory efficient variant, as we
should not sample the element with index self.pos See https://github.com/DLR-RM/stable-baselines3/pull/
28#issuecomment-637559274

Parameters

• batch_size – Number of element to sample

• env – associated gym VecEnv to normalize the observations/rewards when sampling

Returns

imitation.policies.serialize

Load serialized policies of different types.
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Module Attributes

PolicyLoaderFn A policy loader function that takes a VecEnv before any
other custom arguments and returns a stable_baselines3
base policy policy.

policy_registry Registry of policy loading functions.

Functions

load_policy(policy_type, venv, **kwargs) Load serialized policy.
load_stable_baselines_model(cls, path, venv, ...) Helper method to load RL models from Stable Base-

lines.
save_stable_model(output_dir, model[, filename]) Serialize Stable Baselines model.

Classes

SavePolicyCallback(policy_dir, *args, **kwargs) Saves the policy using save_stable_model each time it is
called.

imitation.policies.serialize.PolicyLoaderFn

A policy loader function that takes a VecEnv before any other custom arguments and returns a stable_baselines3
base policy policy.

alias of Callable[[. . . ], BasePolicy]

class imitation.policies.serialize.SavePolicyCallback(policy_dir, *args, **kwargs)
Bases: EventCallback

Saves the policy using save_stable_model each time it is called.

Should be used in conjunction with callbacks.EveryNTimesteps or another event-based trigger.

__init__(policy_dir, *args, **kwargs)
Builds SavePolicyCallback.

Parameters

• policy_dir (Path) – Directory to save checkpoints.

• *args – Passed through to callbacks.EventCallback.

• **kwargs – Passed through to callbacks.EventCallback.

logger: Logger

model: base_class.BaseAlgorithm

imitation.policies.serialize.load_policy(policy_type, venv, **kwargs)
Load serialized policy.

Note on the kwargs:

• zero and random policy take no kwargs

• ppo and sac policies take a path argument with a path to a zip file or to a folder containing a model.zip file.
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• ppo-huggingface and sac-huggingface policies take an env_name and optional organization argument.

Parameters

• policy_type (str) – A key in policy_registry, e.g. ppo.

• venv (VecEnv) – An environment that the policy is to be used with.

• **kwargs – Additional arguments to pass to the policy loader.

Return type
BasePolicy

Returns
The deserialized policy.

imitation.policies.serialize.load_stable_baselines_model(cls, path, venv, **kwargs)
Helper method to load RL models from Stable Baselines.

Parameters

• cls (Type[TypeVar(Algorithm, bound= BaseAlgorithm)]) – Stable Baselines RL algo-
rithm.

• path (str) – Path to zip file containing saved model data or to a folder containing a model.zip
file.

• venv (VecEnv) – Environment to train on.

• kwargs – Passed through to cls.load.

Raises

• FileNotFoundError – If path is not a directory containing a model.zip file.

• FileExistsError – If path contains a vec_normalize.pkl file (unsupported).

Return type
TypeVar(Algorithm, bound= BaseAlgorithm)

Returns
The deserialized RL algorithm.

imitation.policies.serialize.policy_registry: Registry[Callable[[...], BasePolicy]] =
<imitation.util.registry.Registry object>

Registry of policy loading functions. Add your own here if desired.

imitation.policies.serialize.save_stable_model(output_dir, model, filename='model.zip')
Serialize Stable Baselines model.

Load later with load_policy(. . . , policy_path=output_dir).

Parameters

• output_dir (Path) – Path to the save directory.

• model (BaseAlgorithm) – The stable baselines model.

• filename (str) – The filename of the model.

Return type
None
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3.1.4 imitation.regularization

Implements a variety of regularization techniques for NN weights.

Modules

imitation.regularization.regularizers Implements the regularizer base class and some standard
regularizers.

imitation.regularization.updaters Implements parameter scaling algorithms to update the
parameters of a regularizer.

imitation.regularization.regularizers

Implements the regularizer base class and some standard regularizers.

Classes

LossRegularizer(optimizer, initial_lambda, ...) Abstract base class for regularizers that add a loss term
to the loss function.

LpRegularizer(optimizer, initial_lambda, ...) Applies Lp regularization to a loss function.
Regularizer(optimizer, initial_lambda, ...) Abstract class for creating regularizers with a common

interface.
RegularizerFactory(*args, **kwargs) Protocol for functions that create regularizers.
WeightDecayRegularizer(optimizer, ...[, ...]) Applies weight decay to a loss function.
WeightRegularizer(optimizer, initial_lambda, ...) Abstract base class for regularizers that regularize the

weights of a network.

class imitation.regularization.regularizers.LossRegularizer(optimizer, initial_lambda,
lambda_updater, logger,
val_split=None)

Bases: Regularizer[Union[Tensor, float]]

Abstract base class for regularizers that add a loss term to the loss function.

Requires the user to implement the _loss_penalty method.

lambda_: float

lambda_updater: Optional[LambdaUpdater]

logger: HierarchicalLogger

optimizer: Optimizer

regularize_and_backward(loss)
Add the regularization term to the loss and compute gradients.

Parameters
loss (Tensor) – The loss to regularize.

Return type
Union[Tensor, float]
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Returns
The regularized loss.

val_split: Optional[float]

class imitation.regularization.regularizers.LpRegularizer(optimizer, initial_lambda,
lambda_updater, logger, p,
val_split=None)

Bases: LossRegularizer

Applies Lp regularization to a loss function.

__init__(optimizer, initial_lambda, lambda_updater, logger, p, val_split=None)
Initialize the regularizer.

p: int

class imitation.regularization.regularizers.Regularizer(optimizer, initial_lambda, lambda_updater,
logger, val_split=None)

Bases: ABC, Generic[R]

Abstract class for creating regularizers with a common interface.

__init__(optimizer, initial_lambda, lambda_updater, logger, val_split=None)
Initialize the regularizer.

Parameters

• optimizer (Optimizer) – The optimizer to which the regularizer is attached.

• initial_lambda (float) – The initial value of the regularization parameter.

• lambda_updater (Optional[LambdaUpdater]) – A callable object that takes in the cur-
rent lambda and the train and val loss, and returns the new lambda.

• logger (HierarchicalLogger) – The logger to which the regularizer will log its param-
eters.

• val_split (Optional[float]) – The fraction of the training data to use as validation
data for the lambda updater. Can be none if no lambda updater is provided.

Raises

• ValueError – if no lambda updater (lambda_updater) is provided and the initial regu-
larization strength (initial_lambda) is zero.

• ValueError – if a validation split (val_split) is provided but it’s not a float in the (0, 1)
interval.

• ValueError – if a lambda updater is provided but no validation split is provided.

• ValueError – if a validation split is set, but no lambda updater is provided.

classmethod create(initial_lambda, lambda_updater=None, val_split=0.0, **kwargs)
Create a regularizer.

Return type
RegularizerFactory[TypeVar(Self, bound= Regularizer)]

lambda_: float

lambda_updater: Optional[LambdaUpdater]
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logger: HierarchicalLogger

optimizer: Optimizer

abstract regularize_and_backward(loss)
Abstract method for performing the regularization step.

The return type is a generic and the specific implementation must describe the meaning of the return type.

This step will also call loss.backward() for the user. This is because the regularizer may require the loss to
be called before or after the regularization step. Leaving this to the user would force them to make their
implementation dependent on the regularizer algorithm used, which is prone to errors.

Parameters
loss (Tensor) – The loss to regularize.

Return type
TypeVar(R)

update_params(train_loss, val_loss)
Update the regularization parameter.

This method calls the lambda_updater to update the regularization parameter, and assigns the new value to
self.lambda_. Then logs the new value using the provided logger.

Parameters

• train_loss (Union[Tensor, float]) – The loss on the training set.

• val_loss (Union[Tensor, float]) – The loss on the validation set.

Return type
None

val_split: Optional[float]

class imitation.regularization.regularizers.RegularizerFactory(*args, **kwargs)
Bases: Protocol[T_Regularizer_co]

Protocol for functions that create regularizers.

The regularizer factory is meant to be used as a way to create a regularizer in two steps. First, the end-user creates
a regularizer factory by calling the .create() method of a regularizer class. This allows specifying all the relevant
configuration to the regularization algorithm. Then, the network algorithm finishes setting up the optimizer and
logger, and calls the regularizer factory to create the regularizer.

This two-step process separates the configuration of the regularization algorithm from additional “operational”
parameters. This is useful because it solves two problems:

1. The end-user does not have access to the optimizer and logger when configuring the regularization algo-
rithm.

2. Validation of the configuration is done outside the network constructor.

It also allows re-using the same regularizer factory for multiple networks.

__init__(*args, **kwargs)

class imitation.regularization.regularizers.WeightDecayRegularizer(optimizer, initial_lambda,
lambda_updater, logger,
val_split=None)

Bases: WeightRegularizer

Applies weight decay to a loss function.
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lambda_: float

lambda_updater: Optional[LambdaUpdater]

logger: HierarchicalLogger

optimizer: Optimizer

val_split: Optional[float]

class imitation.regularization.regularizers.WeightRegularizer(optimizer, initial_lambda,
lambda_updater, logger,
val_split=None)

Bases: Regularizer

Abstract base class for regularizers that regularize the weights of a network.

Requires the user to implement the _weight_penalty method.

lambda_: float

lambda_updater: Optional[LambdaUpdater]

logger: HierarchicalLogger

optimizer: Optimizer

regularize_and_backward(loss)
Regularize the weights of the network, and call loss.backward().

Return type
None

val_split: Optional[float]

imitation.regularization.updaters

Implements parameter scaling algorithms to update the parameters of a regularizer.

Classes

IntervalParamScaler(scaling_factor, ...) Scales the lambda of the regularizer by some constant
factor.

LambdaUpdater(*args, **kwargs) Protocol type for functions that update the regularizer
parameter.

class imitation.regularization.updaters.IntervalParamScaler(scaling_factor, tolerable_interval)
Bases: LambdaUpdater

Scales the lambda of the regularizer by some constant factor.

Lambda is scaled up if the ratio of the validation loss to the training loss is above the tolerable interval, and scaled
down if the ratio is below the tolerable interval. Nothing happens if the ratio is within the tolerable interval.
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__init__(scaling_factor, tolerable_interval)
Initialize the interval parameter scaler.

Parameters

• scaling_factor (float) – The factor by which to scale the lambda, a value in (0, 1).

• tolerable_interval (Tuple[float, float]) – The interval within which the ratio of
the validation loss to the training loss is considered acceptable. A tuple whose first element
is at least 0 and the second element is greater than the first.

Raises

• ValueError – If the tolerable interval is not a tuple of length 2.

• ValueError – if the scaling factor is not in (0, 1).

• ValueError – if the tolerable interval is negative or not a proper interval.

class imitation.regularization.updaters.LambdaUpdater(*args, **kwargs)
Bases: Protocol

Protocol type for functions that update the regularizer parameter.

A callable object that takes in the current lambda and the train and val loss, and returns the new lambda. This has
been implemented as a protocol and not an ABC because a user might wish to provide their own implementation
without having to inherit from the base class, e.g. by defining a function instead of a class.

Note: if you implement LambdaUpdater, your implementation MUST be purely functional, i.e. side-effect free.
The class structure should only be used to store constant hyperparameters. (Alternatively, closures can be used
for that).

__init__(*args, **kwargs)

3.1.5 imitation.rewards

Reward models: neural network modules, serialization, preprocessing, etc.

Modules

imitation.rewards.reward_function Type alias shared by reward-related code.
imitation.rewards.reward_nets Constructs deep network reward models.
imitation.rewards.reward_wrapper Common wrapper for adding custom reward values to an

environment.
imitation.rewards.serialize Load serialized reward functions of different types.

imitation.rewards.reward_function

Type alias shared by reward-related code.
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Classes

RewardFn(*args, **kwargs) Abstract class for reward function.

class imitation.rewards.reward_function.RewardFn(*args, **kwargs)
Bases: Protocol

Abstract class for reward function.

Requires implementation of __call__() to compute the reward given a batch of states, actions, next states and
dones.

__init__(*args, **kwargs)

imitation.rewards.reward_nets

Constructs deep network reward models.

Functions

cnn_transpose(tens) Transpose a (b,h,w,c)-formatted tensor to (b,c,h,w) for-
mat.

Classes

AddSTDRewardWrapper(base[, default_alpha]) Adds a multiple of the estimated standard deviation to
mean reward.

BasicPotentialCNN(observation_space, hid_sizes) Simple implementation of a potential using a CNN.
BasicPotentialMLP(observation_space, ...) Simple implementation of a potential using an MLP.
BasicRewardNet(observation_space, action_space) MLP that takes as input the state, action, next state and

done flag.
BasicShapedRewardNet(observation_space, ...) Shaped reward net based on MLPs.
CnnRewardNet(observation_space, action_space) CNN that takes as input the state, action, next state and

done flag.
ForwardWrapper(base) An abstract RewardNetWrapper that changes the behav-

ior of forward.
NormalizedRewardNet(base, normal-
ize_output_layer)

A reward net that normalizes the output of its base net-
work.

PredictProcessedWrapper(base) An abstract RewardNetWrapper that changes the behav-
ior of predict_processed.

RewardEnsemble(observation_space, ...) A mean ensemble of reward networks.
RewardNet(observation_space, action_space[, ...]) Minimal abstract reward network.
RewardNetWithVariance(observation_space, ...) A reward net that keeps track of its epistemic uncertainty

through variance.
RewardNetWrapper(base) Abstract class representing a wrapper modifying a

RewardNet's functionality.
ShapedRewardNet(base, potential, discount_factor) A RewardNet consisting of a base network and a poten-

tial shaping.
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class imitation.rewards.reward_nets.AddSTDRewardWrapper(base, default_alpha=0.0)
Bases: PredictProcessedWrapper

Adds a multiple of the estimated standard deviation to mean reward.

__init__(base, default_alpha=0.0)
Create a reward network that adds a multiple of the standard deviation.

Parameters

• base (RewardNetWithVariance) – A reward network that keeps track of its epistemic
variance. This is used to compute the standard deviation.

• default_alpha (float) – multiple of standard deviation to add to the reward mean. De-
faults to 0.0.

Raises
TypeError – if base is not an instance of RewardNetWithVariance

predict_processed(state, action, next_state, done, alpha=None, **kwargs)
Compute a lower/upper confidence bound on the reward without gradients.

Parameters

• state (ndarray) – Current states of shape (batch_size,) + state_shape.

• action (ndarray) – Actions of shape (batch_size,) + action_shape.

• next_state (ndarray) – Successor states of shape (batch_size,) + state_shape.

• done (ndarray) – End-of-episode (terminal state) indicator of shape (batch_size,).

• alpha (Optional[float]) – multiple of standard deviation to add to the reward mean.
Defaults to the value provided at initialization.

• **kwargs – are not used

Return type
ndarray

Returns
Estimated lower confidence bounds on rewards of shape (batch_size,).

class imitation.rewards.reward_nets.BasicPotentialCNN(observation_space, hid_sizes,
hwc_format=True, **kwargs)

Bases: Module

Simple implementation of a potential using a CNN.

__init__(observation_space, hid_sizes, hwc_format=True, **kwargs)
Initialize the potential.

Parameters

• observation_space (Space) – observation space of the environment.

• hid_sizes (Iterable[int]) – number of channels in hidden layers of the CNN.

• hwc_format (bool) – format of the observation. True if channel dimension is last, False
if channel dimension is first.

• kwargs – passed straight through to build_cnn.

Raises
ValueError – if observations are not images.
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forward(state)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks while
the latter silently ignores them.

Return type
Tensor

training: bool

class imitation.rewards.reward_nets.BasicPotentialMLP(observation_space, hid_sizes, **kwargs)
Bases: Module

Simple implementation of a potential using an MLP.

__init__(observation_space, hid_sizes, **kwargs)
Initialize the potential.

Parameters

• observation_space (Space) – observation space of the environment.

• hid_sizes (Iterable[int]) – widths of the hidden layers of the MLP.

• kwargs – passed straight through to build_mlp.

forward(state)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks while
the latter silently ignores them.

Return type
Tensor

training: bool

class imitation.rewards.reward_nets.BasicRewardNet(observation_space, action_space, use_state=True,
use_action=True, use_next_state=False,
use_done=False, **kwargs)

Bases: RewardNet

MLP that takes as input the state, action, next state and done flag.

These inputs are flattened and then concatenated to one another. Each input can enabled or disabled by the use_*
constructor keyword arguments.
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__init__(observation_space, action_space, use_state=True, use_action=True, use_next_state=False,
use_done=False, **kwargs)

Builds reward MLP.

Parameters

• observation_space (Space) – The observation space.

• action_space (Space) – The action space.

• use_state (bool) – should the current state be included as an input to the MLP?

• use_action (bool) – should the current action be included as an input to the MLP?

• use_next_state (bool) – should the next state be included as an input to the MLP?

• use_done (bool) – should the “done” flag be included as an input to the MLP?

• kwargs – passed straight through to build_mlp.

forward(state, action, next_state, done)
Compute rewards for a batch of transitions and keep gradients.

training: bool

class imitation.rewards.reward_nets.BasicShapedRewardNet(observation_space, action_space, *,
reward_hid_sizes=(32,),
potential_hid_sizes=(32, 32),
use_state=True, use_action=True,
use_next_state=False, use_done=False,
discount_factor=0.99, **kwargs)

Bases: ShapedRewardNet

Shaped reward net based on MLPs.

This is just a very simple convenience class for instantiating a BasicRewardNet and a BasicPotentialMLP and
wrapping them inside a ShapedRewardNet. Mainly exists for backwards compatibility after https://github.com/
HumanCompatibleAI/imitation/pull/311 to keep the scripts working.

TODO(ejnnr): if we ever modify AIRL so that it takes in a RewardNet instance
directly (instead of a class and kwargs) and instead instantiate the RewardNet inside the scripts, then it
probably makes sense to get rid of this class.

__init__(observation_space, action_space, *, reward_hid_sizes=(32,), potential_hid_sizes=(32, 32),
use_state=True, use_action=True, use_next_state=False, use_done=False, discount_factor=0.99,
**kwargs)

Builds a simple shaped reward network.

Parameters

• observation_space (Space) – The observation space.

• action_space (Space) – The action space.

• reward_hid_sizes (Sequence[int]) – sequence of widths for the hidden layers of the
base reward MLP.

• potential_hid_sizes (Sequence[int]) – sequence of widths for the hidden layers of
the potential MLP.

• use_state (bool) – should the current state be included as an input to the reward MLP?

• use_action (bool) – should the current action be included as an input to the reward MLP?
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• use_next_state (bool) – should the next state be included as an input to the reward
MLP?

• use_done (bool) – should the “done” flag be included as an input to the reward MLP?

• discount_factor (float) – discount factor for the potential shaping.

• kwargs – passed straight through to BasicRewardNet and BasicPotentialMLP.

training: bool

class imitation.rewards.reward_nets.CnnRewardNet(observation_space, action_space, use_state=True,
use_action=True, use_next_state=False,
use_done=False, hwc_format=True, **kwargs)

Bases: RewardNet

CNN that takes as input the state, action, next state and done flag.

Inputs are boosted to tensors with channel, height, and width dimensions, and then concatenated. Image inputs
are assumed to be in (h,w,c) format, unless the argument hwc_format=False is passed in. Each input can be
enabled or disabled by the use_* constructor keyword arguments, but either use_state or use_next_state must be
True.

__init__(observation_space, action_space, use_state=True, use_action=True, use_next_state=False,
use_done=False, hwc_format=True, **kwargs)

Builds reward CNN.

Parameters

• observation_space (Space) – The observation space.

• action_space (Space) – The action space.

• use_state (bool) – Should the current state be included as an input to the CNN?

• use_action (bool) – Should the current action be included as an input to the CNN?

• use_next_state (bool) – Should the next state be included as an input to the CNN?

• use_done (bool) – Should the “done” flag be included as an input to the CNN?

• hwc_format (bool) – Are image inputs in (h,w,c) format (True), or (c,h,w) (False)? If
hwc_format is False, image inputs are not transposed.

• kwargs – Passed straight through to build_cnn.

Raises
ValueError – if observation or action space is not easily massaged into a CNN input.

forward(state, action, next_state, done)
Computes rewardNet value on input state, action, next_state, and done flag.

Takes inputs that will be used, transposes image states to (c,h,w) format if needed, reshapes inputs to have
compatible dimensions, concatenates them, and inputs them into the CNN.

Parameters

• state (Tensor) – current state.

• action (Tensor) – current action.

• next_state (Tensor) – next state.

• done (Tensor) – flag for whether the episode is over.
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Returns
reward of the transition.

Return type
th.Tensor

get_num_channels_obs(space)
Gets number of channels for the observation.

Return type
int

training: bool

class imitation.rewards.reward_nets.ForwardWrapper(base)
Bases: RewardNetWrapper

An abstract RewardNetWrapper that changes the behavior of forward.

Note that all forward wrappers must be placed before all predict processed wrappers.

__init__(base)
Create a forward wrapper.

Parameters
base (RewardNet) – The base reward network

Raises
ValueError – if the base network is a PredictProcessedWrapper.

training: bool

class imitation.rewards.reward_nets.NormalizedRewardNet(base, normalize_output_layer)
Bases: PredictProcessedWrapper

A reward net that normalizes the output of its base network.

__init__(base, normalize_output_layer)
Initialize the NormalizedRewardNet.

Parameters

• base (RewardNet) – a base RewardNet

• normalize_output_layer (Type[BaseNorm]) – The class to use to normalize rewards.
This can be any nn.Module that preserves the shape; e.g. nn.Identity, nn.LayerNorm, or
networks.RunningNorm.

predict_processed(state, action, next_state, done, update_stats=True, **kwargs)
Compute normalized rewards for a batch of transitions without gradients.

Parameters

• state (ndarray) – Current states of shape (batch_size,) + state_shape.

• action (ndarray) – Actions of shape (batch_size,) + action_shape.

• next_state (ndarray) – Successor states of shape (batch_size,) + state_shape.

• done (ndarray) – End-of-episode (terminal state) indicator of shape (batch_size,).

• update_stats (bool) – Whether to update the running stats of the normalization layer.

• **kwargs – kwargs passed to base predict_processed call.
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Return type
ndarray

Returns
Computed normalized rewards of shape (batch_size,).

training: bool

class imitation.rewards.reward_nets.PredictProcessedWrapper(base)
Bases: RewardNetWrapper

An abstract RewardNetWrapper that changes the behavior of predict_processed.

Subclasses should override predict_processed. Implementations should pass along kwargs to the base reward
net’s predict_processed method.

Note: The wrapper will default to forwarding calls to device, forward,
preprocess and predict to the base reward net unless explicitly overridden in a subclass.

forward(state, action, next_state, done)
Compute rewards for a batch of transitions and keep gradients.

Return type
Tensor

predict(state, action, next_state, done)
Compute rewards for a batch of transitions without gradients.

Converting th.Tensor rewards from predict_th to NumPy arrays.

Parameters

• state (ndarray) – Current states of shape (batch_size,) + state_shape.

• action (ndarray) – Actions of shape (batch_size,) + action_shape.

• next_state (ndarray) – Successor states of shape (batch_size,) + state_shape.

• done (ndarray) – End-of-episode (terminal state) indicator of shape (batch_size,).

Return type
ndarray

Returns
Computed rewards of shape (batch_size,).

abstract predict_processed(state, action, next_state, done, **kwargs)
Predict processed must be overridden in subclasses.

Return type
ndarray

predict_th(state, action, next_state, done)
Compute th.Tensor rewards for a batch of transitions without gradients.

Preprocesses the inputs, output th.Tensor reward arrays.

Parameters

• state (ndarray) – Current states of shape (batch_size,) + state_shape.

• action (ndarray) – Actions of shape (batch_size,) + action_shape.

• next_state (ndarray) – Successor states of shape (batch_size,) + state_shape.

• done (ndarray) – End-of-episode (terminal state) indicator of shape (batch_size,).
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Return type
Tensor

Returns
Computed th.Tensor rewards of shape (batch_size,).

training: bool

class imitation.rewards.reward_nets.RewardEnsemble(observation_space, action_space, members)
Bases: RewardNetWithVariance

A mean ensemble of reward networks.

A reward ensemble is made up of individual reward networks. To maintain consistency the “output” of a reward
network will be defined as the results of its predict_processed. Thus for example the mean of the ensemble is
the mean of the results of its members predict processed classes.

__init__(observation_space, action_space, members)
Initialize the RewardEnsemble.

Parameters

• observation_space (Space) – the observation space of the environment

• action_space (Space) – the action space of the environment

• members (Iterable[RewardNet]) – the member networks that will make up the ensem-
ble.

Raises
ValueError – if num_members is less than 1

forward(*args)
The forward method of the ensemble should in general not be used directly.

Return type
Tensor

members: ModuleList

property num_members

The number of members in the ensemble.

predict(state, action, next_state, done, **kwargs)
Return the mean of the ensemble members.

predict_processed(state, action, next_state, done, **kwargs)
Return the mean of the ensemble members.

Return type
ndarray

predict_processed_all(state, action, next_state, done, **kwargs)
Get the results of predict processed on all of the members.

Parameters

• state (ndarray) – Current states of shape (batch_size,) + state_shape.

• action (ndarray) – Actions of shape (batch_size,) + action_shape.

• next_state (ndarray) – Successor states of shape (batch_size,) + state_shape.

• done (ndarray) – End-of-episode (terminal state) indicator of shape (batch_size,).
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• kwargs – passed along to ensemble members.

Return type
ndarray

Returns

The result of predict processed for each member in the ensemble of
shape (batch_size, num_members).

predict_reward_moments(state, action, next_state, done, **kwargs)
Compute the standard deviation of the reward distribution for a batch.

Parameters

• state (ndarray) – Current states of shape (batch_size,) + state_shape.

• action (ndarray) – Actions of shape (batch_size,) + action_shape.

• next_state (ndarray) – Successor states of shape (batch_size,) + state_shape.

• done (ndarray) – End-of-episode (terminal state) indicator of shape (batch_size,).

• **kwargs – passed along to predict processed.

Return type
Tuple[ndarray, ndarray]

Returns

• Reward mean of shape (batch_size,).

• Reward variance of shape (batch_size,).

class imitation.rewards.reward_nets.RewardNet(observation_space, action_space,
normalize_images=True)

Bases: Module, ABC

Minimal abstract reward network.

Only requires the implementation of a forward pass (calculating rewards given a batch of states, actions, next
states and dones).

__init__(observation_space, action_space, normalize_images=True)
Initialize the RewardNet.

Parameters

• observation_space (Space) – the observation space of the environment

• action_space (Space) – the action space of the environment

• normalize_images (bool) – whether to automatically normalize image observations to
[0, 1] (from 0 to 255). Defaults to True.

property device: device

Heuristic to determine which device this module is on.

Return type
device

property dtype: dtype

Heuristic to determine dtype of module.

Return type
dtype
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abstract forward(state, action, next_state, done)
Compute rewards for a batch of transitions and keep gradients.

Return type
Tensor

predict(state, action, next_state, done)
Compute rewards for a batch of transitions without gradients.

Converting th.Tensor rewards from predict_th to NumPy arrays.

Parameters

• state (ndarray) – Current states of shape (batch_size,) + state_shape.

• action (ndarray) – Actions of shape (batch_size,) + action_shape.

• next_state (ndarray) – Successor states of shape (batch_size,) + state_shape.

• done (ndarray) – End-of-episode (terminal state) indicator of shape (batch_size,).

Return type
ndarray

Returns
Computed rewards of shape (batch_size,).

predict_processed(state, action, next_state, done, **kwargs)
Compute the processed rewards for a batch of transitions without gradients.

Defaults to calling predict. Subclasses can override this to normalize or otherwise modify the rewards in
ways that may help RL training or other applications of the reward function.

Parameters

• state (ndarray) – Current states of shape (batch_size,) + state_shape.

• action (ndarray) – Actions of shape (batch_size,) + action_shape.

• next_state (ndarray) – Successor states of shape (batch_size,) + state_shape.

• done (ndarray) – End-of-episode (terminal state) indicator of shape (batch_size,).

• kwargs – additional kwargs may be passed to change the functionality of subclasses.

Return type
ndarray

Returns
Computed processed rewards of shape (batch_size,).

predict_th(state, action, next_state, done)
Compute th.Tensor rewards for a batch of transitions without gradients.

Preprocesses the inputs, output th.Tensor reward arrays.

Parameters

• state (ndarray) – Current states of shape (batch_size,) + state_shape.

• action (ndarray) – Actions of shape (batch_size,) + action_shape.

• next_state (ndarray) – Successor states of shape (batch_size,) + state_shape.

• done (ndarray) – End-of-episode (terminal state) indicator of shape (batch_size,).
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Return type
Tensor

Returns
Computed th.Tensor rewards of shape (batch_size,).

preprocess(state, action, next_state, done)
Preprocess a batch of input transitions and convert it to PyTorch tensors.

The output of this function is suitable for its forward pass, so a typical usage would be model(*model.
preprocess(transitions)).

Parameters

• state (ndarray) – The observation input. Its shape is (batch_size,) + observa-
tion_space.shape.

• action (ndarray) – The action input. Its shape is (batch_size,) + action_space.shape.
The None dimension is expected to be the same as None dimension from obs_input.

• next_state (ndarray) – The observation input. Its shape is (batch_size,) + observa-
tion_space.shape.

• done (ndarray) – Whether the episode has terminated. Its shape is (batch_size,).

Returns
a Tuple of tensors containing observations, actions, next observations and dones.

Return type
Preprocessed transitions

training: bool

class imitation.rewards.reward_nets.RewardNetWithVariance(observation_space, action_space,
normalize_images=True)

Bases: RewardNet

A reward net that keeps track of its epistemic uncertainty through variance.

abstract predict_reward_moments(state, action, next_state, done, **kwargs)
Compute the mean and variance of the reward distribution.

Parameters

• state (ndarray) – Current states of shape (batch_size,) + state_shape.

• action (ndarray) – Actions of shape (batch_size,) + action_shape.

• next_state (ndarray) – Successor states of shape (batch_size,) + state_shape.

• done (ndarray) – End-of-episode (terminal state) indicator of shape (batch_size,).

• **kwargs – may modify the behavior of subclasses

Return type
Tuple[ndarray, ndarray]

Returns

• Estimated reward mean of shape (batch_size,).

• Estimated reward variance of shape (batch_size,). # noqa: DAR202

training: bool
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class imitation.rewards.reward_nets.RewardNetWrapper(base)
Bases: RewardNet

Abstract class representing a wrapper modifying a RewardNet’s functionality.

In general RewardNetWrapper``s should either subclass ``ForwardWrapper or
PredictProcessedWrapper.

__init__(base)
Initialize a RewardNet wrapper.

Parameters
base (RewardNet) – the base RewardNet to wrap.

property base: RewardNet

Return type
RewardNet

property device: device

Heuristic to determine which device this module is on.

Return type
device

property dtype: dtype

Heuristic to determine dtype of module.

Return type
dtype

preprocess(state, action, next_state, done)
Preprocess a batch of input transitions and convert it to PyTorch tensors.

The output of this function is suitable for its forward pass, so a typical usage would be model(*model.
preprocess(transitions)).

Parameters

• state (ndarray) – The observation input. Its shape is (batch_size,) + observa-
tion_space.shape.

• action (ndarray) – The action input. Its shape is (batch_size,) + action_space.shape.
The None dimension is expected to be the same as None dimension from obs_input.

• next_state (ndarray) – The observation input. Its shape is (batch_size,) + observa-
tion_space.shape.

• done (ndarray) – Whether the episode has terminated. Its shape is (batch_size,).

Returns
a Tuple of tensors containing observations, actions, next observations and dones.

Return type
Preprocessed transitions

training: bool

class imitation.rewards.reward_nets.ShapedRewardNet(base, potential, discount_factor)
Bases: ForwardWrapper

A RewardNet consisting of a base network and a potential shaping.
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__init__(base, potential, discount_factor)
Setup a ShapedRewardNet instance.

Parameters

• base (RewardNet) – the base reward net to which the potential shaping will be added.
Shaping must be applied directly to the raw reward net. See error below.

• potential (Callable[[Tensor], Tensor]) – A callable which takes a batch of states (as
a PyTorch tensor) and returns a batch of potentials for these states. If this is a PyTorch
Module, it becomes a submodule of the ShapedRewardNet instance.

• discount_factor (float) – discount factor to use for the potential shaping.

forward(state, action, next_state, done)
Compute rewards for a batch of transitions and keep gradients.

training: bool

imitation.rewards.reward_nets.cnn_transpose(tens)
Transpose a (b,h,w,c)-formatted tensor to (b,c,h,w) format.

Return type
Tensor

imitation.rewards.reward_wrapper

Common wrapper for adding custom reward values to an environment.

Classes

RewardVecEnvWrapper(venv, reward_fn[, ...]) Uses a provided reward_fn to replace the reward func-
tion returned by step().

WrappedRewardCallback(episode_rewards, ...) Logs mean wrapped reward as part of RL (or other)
training.

class imitation.rewards.reward_wrapper.RewardVecEnvWrapper(venv, reward_fn, ep_history=100)
Bases: VecEnvWrapper

Uses a provided reward_fn to replace the reward function returned by step().

Automatically resets the inner VecEnv upon initialization. A tricky part about this class is keeping track of the
most recent observation from each environment.

Will also include the previous reward given by the inner VecEnv in the returned info dict under the origi-
nal_env_rew key.

__init__(venv, reward_fn, ep_history=100)
Builds RewardVecEnvWrapper.

Parameters

• venv (VecEnv) – The VecEnv to wrap.

• reward_fn (RewardFn) – A function that wraps takes in vectorized transitions (obs, act,
next_obs) a vector of episode timesteps, and returns a vector of rewards.

• ep_history (int) – The number of episode rewards to retain for computing mean reward.
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property envs

make_log_callback()

Creates WrappedRewardCallback connected to this RewardVecEnvWrapper.

Return type
WrappedRewardCallback

reset()

Reset all the environments and return an array of observations, or a tuple of observation arrays.

If step_async is still doing work, that work will be cancelled and step_wait() should not be called until
step_async() is invoked again.

Returns
observation

step_async(actions)
Tell all the environments to start taking a step with the given actions. Call step_wait() to get the results of
the step.

You should not call this if a step_async run is already pending.

step_wait()

Wait for the step taken with step_async().

Returns
observation, reward, done, information

class imitation.rewards.reward_wrapper.WrappedRewardCallback(episode_rewards, *args, **kwargs)
Bases: BaseCallback

Logs mean wrapped reward as part of RL (or other) training.

__init__(episode_rewards, *args, **kwargs)
Builds WrappedRewardCallback.

Parameters

• episode_rewards (Deque[float]) – A queue that episode rewards will be placed into.

• *args – Passed through to callbacks.BaseCallback.

• **kwargs – Passed through to callbacks.BaseCallback.

logger: Logger

model: base_class.BaseAlgorithm

imitation.rewards.serialize

Load serialized reward functions of different types.
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Functions

load_reward(reward_type, reward_path, venv, ...) Load serialized reward.
load_zero(path, venv)

rtype
RewardFn

Classes

ValidateRewardFn(reward_fn) Wrap reward function to add sanity check.

class imitation.rewards.serialize.ValidateRewardFn(reward_fn)
Bases: RewardFn

Wrap reward function to add sanity check.

Checks that the length of the reward vector is equal to the batch size of the input.

__init__(reward_fn)
Builds the reward validator.

Parameters
reward_fn (RewardFn) – base reward function

imitation.rewards.serialize.load_reward(reward_type, reward_path, venv, **kwargs)
Load serialized reward.

Parameters

• reward_type (str) – A key in reward_registry. Valid types include zero, Reward-
Net_unshaped, RewardNet_normalized, RewardNet_shaped, RewardNet_std_added, Re-
wardNet_unnormalized.

• reward_path (str) – A path specifying the reward.

• venv (VecEnv) – An environment that the policy is to be used with.

• **kwargs – kwargs to pass to reward fn

Return type
RewardFn

Returns
The deserialized reward.

imitation.rewards.serialize.load_zero(path, venv)

Return type
RewardFn
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3.1.6 imitation.scripts

Command-line scripts.

Modules

imitation.scripts.analyze Commands to analyze experimental results.
imitation.scripts.config Configuration settings for scripts.
imitation.scripts.convert_trajs Converts old-style pickle or npz trajectories to new-style

HuggingFace datasets.
imitation.scripts.eval_policy Evaluate policies: render policy interactively, save

videos, log episode return.
imitation.scripts.ingredients Ingredients for Sacred experiments.
imitation.scripts.train_adversarial Train GAIL or AIRL.
imitation.scripts.train_imitation Trains DAgger on synthetic demonstrations generated

from an expert policy.
imitation.scripts.
train_preference_comparisons

Train a reward model using preference comparisons.

imitation.scripts.train_rl Uses RL to train a policy from scratch, saving rollouts
and policy.

imitation.scripts.analyze

Commands to analyze experimental results.

Functions

analyze_imitation(csv_output_path, ...) Parse Sacred logs and generate a DataFrame for imita-
tion learning results.

gather_tb_directories() Gather Tensorboard directories from a parallel_ex run.
main_console()

imitation.scripts.analyze.analyze_imitation(csv_output_path, tex_output_path, print_table,
table_verbosity)

Parse Sacred logs and generate a DataFrame for imitation learning results.

This function calls the helper _gather_sacred_dicts, which captures its arguments automatically via Sacred.
Provide those arguments to select which Sacred results to parse.

Parameters

• csv_output_path (Optional[str]) – If provided, then save a CSV output file to this path.

• tex_output_path (Optional[str]) – If provided, then save a LaTeX-format table to this
path.

• print_table (bool) – If True, then print the dataframe to stdout.

• table_verbosity (int) – Increasing levels of verbosity, from 0 to 2, increase the number
of columns in the table.
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Return type
DataFrame

Returns
The DataFrame generated from the Sacred logs.

imitation.scripts.analyze.gather_tb_directories()

Gather Tensorboard directories from a parallel_ex run.

The directories are copied to a unique directory in /tmp/analysis_tb/ under subdirectories matching the Tensor-
board events’ Ray Tune trial names.

This function calls the helper _gather_sacred_dicts, which captures its arguments automatically via Sacred.
Provide those arguments to select which Sacred results to parse.

Return type
dict

Returns
A dict with two keys. “gather_dir” (str) is a path to a /tmp/ directory containing all the Tensor-
Board runs filtered from source_dir. “n_tb_dirs” (int) is the number of TensorBoard directories
that were filtered.

Raises
OSError – If the symlink cannot be created.

imitation.scripts.analyze.main_console()

imitation.scripts.config

Configuration settings for scripts.

Modules

imitation.scripts.config.analyze Configuration settings for analyze, inspecting results
from completed experiments.

imitation.scripts.config.eval_policy Configuration settings for eval_policy, evaluating pre-
trained policies.

imitation.scripts.config.train_adversarial Configuration for imitation.scripts.train_adversarial.
imitation.scripts.config.train_imitation Configuration settings for train_dagger, training DAgger

from synthetic demos.
imitation.scripts.config.
train_preference_comparisons

Configuration for imita-
tion.scripts.train_preference_comparisons.

imitation.scripts.config.train_rl Configuration settings for train_rl, training a policy with
RL.
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imitation.scripts.config.analyze

Configuration settings for analyze, inspecting results from completed experiments.

imitation.scripts.config.eval_policy

Configuration settings for eval_policy, evaluating pre-trained policies.

imitation.scripts.config.train_adversarial

Configuration for imitation.scripts.train_adversarial.

imitation.scripts.config.train_imitation

Configuration settings for train_dagger, training DAgger from synthetic demos.

imitation.scripts.config.train_preference_comparisons

Configuration for imitation.scripts.train_preference_comparisons.

imitation.scripts.config.train_rl

Configuration settings for train_rl, training a policy with RL.

imitation.scripts.convert_trajs

Converts old-style pickle or npz trajectories to new-style HuggingFace datasets.

See https://github.com/HumanCompatibleAI/imitation/pull/448 for a description of the new trajectory format.

This script takes as command-line input multiple paths to saved trajectories, in the old .pkl or .npz format. It then saves
each sequence in the new HuggingFace datasets format. The path is the same as the original but a directory without an
extension (i.e. “A.pkl” -> “A/”, “A.npz” -> “A/”, “A/” -> “A/”, “A.foo” -> “A/”).

Functions

main()

update_traj_file_in_place(path_str, /) Converts pickle or npz file to the new HuggingFace for-
mat.

imitation.scripts.convert_trajs.main()
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imitation.scripts.convert_trajs.update_traj_file_in_place(path_str, /)
Converts pickle or npz file to the new HuggingFace format.

The new data is saved as Sequence[imitation.types.TrajectoryWithRew].

Parameters
path_str (Union[str, bytes, PathLike]) – Path to a pickle or npz file containing Se-
quence[imitation.types.Trajectory] or Sequence[imitation.old_types.TrajectoryWithRew].

Return type
Path

Returns
The path to the converted trajectory dataset.

imitation.scripts.eval_policy

Evaluate policies: render policy interactively, save videos, log episode return.

Functions

eval_policy(eval_n_timesteps, ...[, ...]) Rolls a policy out in an environment, collecting statis-
tics.

main_console()

video_wrapper_factory(log_dir, **kwargs) Returns a function that wraps the environment in a video
recorder.

Classes

InteractiveRender(venv, fps) Render the wrapped environment(s) on screen.

class imitation.scripts.eval_policy.InteractiveRender(venv, fps)
Bases: VecEnvWrapper

Render the wrapped environment(s) on screen.

__init__(venv, fps)
Builds renderer for venv running at fps frames per second.

reset()

Reset all the environments and return an array of observations, or a tuple of observation arrays.

If step_async is still doing work, that work will be cancelled and step_wait() should not be called until
step_async() is invoked again.

Returns
observation

step_wait()

Wait for the step taken with step_async().

Returns
observation, reward, done, information
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imitation.scripts.eval_policy.eval_policy(eval_n_timesteps, eval_n_episodes, render, render_fps,
videos, video_kwargs, _run, _rnd, reward_type=None,
reward_path=None, rollout_save_path=None,
explore_kwargs=None)

Rolls a policy out in an environment, collecting statistics.

Parameters

• eval_n_timesteps (Optional[int]) – Minimum number of timesteps to evaluate for. Set
exactly one of eval_n_episodes and eval_n_timesteps.

• eval_n_episodes (Optional[int]) – Minimum number of episodes to evaluate for. Set
exactly one of eval_n_episodes and eval_n_timesteps.

• render (bool) – If True, renders interactively to the screen.

• render_fps (int) – The target number of frames per second to render on screen.

• videos (bool) – If True, saves videos to log_dir.

• video_kwargs (Mapping[str, Any]) – Keyword arguments passed through to
video_wrapper.VideoWrapper.

• _rnd (Generator) – Random number generator provided by Sacred.

• reward_type (Optional[str]) – If specified, overrides the environment reward with a
reward of this.

• reward_path (Optional[str]) – If reward_type is specified, the path to a serialized reward
of reward_type to override the environment reward with.

• rollout_save_path (Optional[str]) – where to save rollouts used for computing stats
to disk; if None, then do not save.

• explore_kwargs (Optional[Mapping[str, Any]]) – keyword arguments to an exploration
wrapper to apply before rolling out, not including policy_callable, venv, and rng; if None,
then do not wrap.

Returns
Return value of imitation.util.rollout.rollout_stats().

imitation.scripts.eval_policy.main_console()

imitation.scripts.eval_policy.video_wrapper_factory(log_dir, **kwargs)
Returns a function that wraps the environment in a video recorder.

imitation.scripts.ingredients

Ingredients for Sacred experiments.
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Modules

imitation.scripts.ingredients.bc This ingredient provides BC algorithm instance.
imitation.scripts.ingredients.
demonstrations

This ingredient provides (expert) demonstrations to
learn from.

imitation.scripts.ingredients.environment This ingredient provides a vectorized gym environment.
imitation.scripts.ingredients.expert This ingredient provides an expert policy.
imitation.scripts.ingredients.logging This ingredient provides a number of logging utilities.
imitation.scripts.ingredients.policy This ingredient provides a newly constructed stable-

baselines3 policy.
imitation.scripts.ingredients.
policy_evaluation

This ingredient performs evaluation of learned policy.

imitation.scripts.ingredients.reward This ingredient provides a reward network.
imitation.scripts.ingredients.rl This ingredient provides a reinforcement learning algo-

rithm from stable-baselines3.
imitation.scripts.ingredients.wb This ingredient provides Weights & Biases logging.

imitation.scripts.ingredients.bc

This ingredient provides BC algorithm instance.

It is either loaded from disk or constructed from scratch.

Functions

make_bc(venv, expert_trajs, custom_logger, ...)
rtype

BC

make_or_load_policy(venv, agent_path) Makes a policy or loads a policy from a path if provided.

imitation.scripts.ingredients.bc.make_bc(venv, expert_trajs, custom_logger, batch_size, l2_weight,
optimizer_cls, optimizer_kwargs, _rnd)

Return type
BC

imitation.scripts.ingredients.bc.make_or_load_policy(venv, agent_path)
Makes a policy or loads a policy from a path if provided.

Parameters

• venv (VecEnv) – Vectorized environment we will be imitating demos from.

• agent_path (Optional[str]) – Path to serialized policy. If provided, then load the policy
from this path. Otherwise, make a new policy. Specify only if policy_cls and policy_kwargs
are not specified.

Returns
A Stable Baselines3 policy.
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imitation.scripts.ingredients.demonstrations

This ingredient provides (expert) demonstrations to learn from.

The demonstrations are either loaded from disk, from the HuggingFace Dataset Hub, or sampled from the expert policy
provided by the expert ingredient.

Functions

get_expert_trajectories(source, path) Loads expert demonstrations.

imitation.scripts.ingredients.demonstrations.get_expert_trajectories(source, path)
Loads expert demonstrations.

Parameters

• source (str) – Can be either local to load rollouts from the disk, huggingface to load from
the HuggingFace hub or generated to generate the expert trajectories.

• path (str) – A path containing a pickled sequence of sources.Trajectory.

Return type
Sequence[Trajectory]

Returns
The expert trajectories.

Raises
ValueError – if source is not in [“local”, “huggingface”, “generated”].

imitation.scripts.ingredients.environment

This ingredient provides a vectorized gym environment.

Functions

make_rollout_venv(gym_id, num_vec, parallel, ...) Builds the vector environment for rollouts.
make_venv(gym_id, num_vec, parallel, ...) Builds the vector environment.

imitation.scripts.ingredients.environment.make_rollout_venv(gym_id, num_vec, parallel,
max_episode_steps,
env_make_kwargs, _rnd)

Builds the vector environment for rollouts.

This environment does no logging, and it is wrapped in a RolloutInfoWrapper.

Parameters

• gym_id (str) – The id of the environment to create.

• num_vec (int) – Number of gym.Env instances to combine into a vector environment.

• parallel (bool) – Whether to use “true” parallelism. If True, then use SubProcVecEnv.
Otherwise, use DummyVecEnv which steps through environments serially.
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• max_episode_steps (int) – If not None, then a TimeLimit wrapper is applied to each
environment to artificially limit the maximum number of timesteps in an episode.

• env_make_kwargs (Mapping[str, Any]) – The kwargs passed to spec.make of a gym en-
vironment.

• _rnd (Generator) – Random number generator provided by Sacred.

Yields
The constructed vector environment.

Return type
Generator[VecEnv, None, None]

imitation.scripts.ingredients.environment.make_venv(gym_id, num_vec, parallel, max_episode_steps,
env_make_kwargs, _run, _rnd, **kwargs)

Builds the vector environment.

Parameters

• gym_id (str) – The id of the environment to create.

• num_vec (int) – Number of gym.Env instances to combine into a vector environment.

• parallel (bool) – Whether to use “true” parallelism. If True, then use SubProcVecEnv.
Otherwise, use DummyVecEnv which steps through environments serially.

• max_episode_steps (int) – If not None, then a TimeLimit wrapper is applied to each
environment to artificially limit the maximum number of timesteps in an episode.

• env_make_kwargs (Mapping[str, Any]) – The kwargs passed to spec.make of a gym en-
vironment.

• kwargs – Passed through to util.make_vec_env.

Yields
The constructed vector environment.

Return type
Generator[VecEnv, None, None]

imitation.scripts.ingredients.expert

This ingredient provides an expert policy.

The expert policy is either loaded from disk or from the HuggingFace Model Hub or is a test policy (e.g., random or
zero). The supported policy types are:

• ppo and sac: A policy trained with SB3.
Needs a path in the loader_kwargs.

• <algo>-huggingface (algo can be ppo or sac):
A policy trained with SB3 and uploaded to the HuggingFace Model Hub. Will load the model from the
repo <organization>/<algo>-<env_name>. You can set the organization with the organization key in
loader_kwargs. The default is HumanCompatibleAI.

• random: A policy that takes random actions.

• zero: A policy that takes zero actions.
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Functions

config_hook(config, command_name, logger)

get_expert_policy(venv, policy_type, ...)

imitation.scripts.ingredients.expert.config_hook(config, command_name, logger)

imitation.scripts.ingredients.expert.get_expert_policy(venv, policy_type, loader_kwargs)

imitation.scripts.ingredients.logging

This ingredient provides a number of logging utilities.

It is responsible for logging to WandB, TensorBoard, and stdout. It will also create a symlink to the sacred logging
directory in the log directory.

Functions

hook(config, command_name, logger)

make_log_dir(_run, log_dir, log_level) Creates log directory and sets up symlink to Sacred logs.
setup_logging(_run, log_format_strs) Builds the imitation logger.

imitation.scripts.ingredients.logging.hook(config, command_name, logger)

imitation.scripts.ingredients.logging.make_log_dir(_run, log_dir, log_level)
Creates log directory and sets up symlink to Sacred logs.

Parameters

• log_dir (str) – The directory to log to.

• log_level (Union[int, str]) – The threshold of the logger. Either an integer level (10,
20, . . . ), a string of digits (‘10’, ‘20’), or a string of the designated level (‘DEBUG’, ‘INFO’,
. . . ).

Return type
Path

Returns
The log_dir. This avoids the caller needing to capture this argument.

imitation.scripts.ingredients.logging.setup_logging(_run, log_format_strs)
Builds the imitation logger.

Parameters
log_format_strs (Sequence[str]) – The types of formats to log to.

Return type
Tuple[HierarchicalLogger, Path]
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Returns
The configured imitation logger and log_dir. Returning log_dir avoids the caller needing to
capture this value.

imitation.scripts.ingredients.policy

This ingredient provides a newly constructed stable-baselines3 policy.

Functions

make_policy(venv, policy_cls, policy_kwargs) Makes policy.

imitation.scripts.ingredients.policy.make_policy(venv, policy_cls, policy_kwargs)
Makes policy.

Parameters

• venv (VecEnv) – Vectorized environment we will be imitating demos from.

• policy_cls (Type[BasePolicy]) – Type of a Stable Baselines3 policy architecture. Spec-
ify only if policy_path is not specified.

• policy_kwargs (Mapping[str, Any]) – Keyword arguments for policy constructor. Spec-
ify only if policy_path is not specified.

Return type
BasePolicy

Returns
A Stable Baselines3 policy.

imitation.scripts.ingredients.policy_evaluation

This ingredient performs evaluation of learned policy.

It takes care of the right wrappers, does some rollouts and computes statistics of the rollouts.

Functions

eval_policy(rl_algo, venv, n_episodes_eval, _rnd) Evaluation of imitation learned policy.

imitation.scripts.ingredients.policy_evaluation.eval_policy(rl_algo, venv, n_episodes_eval, _rnd)
Evaluation of imitation learned policy.

Has the side effect of setting rl_algo’s environment to venv if it is a BaseAlgorithm.

Parameters

• rl_algo (Union[BaseAlgorithm, BasePolicy]) – Algorithm to evaluate.

• venv (VecEnv) – Environment to evaluate on.

• n_episodes_eval (int) – The number of episodes to average over when calculating the
average episode reward of the imitation policy for return.
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• _rnd (Generator) – Random number generator provided by Sacred.

Return type
Mapping[str, float]

Returns
A dictionary with two keys. “imit_stats” gives the return value of rollout_stats() on rollouts
test-reward-wrapped environment, using the final policy (remember that the ground-truth reward
can be recovered from the “monitor_return” key). “expert_stats” gives the return value of roll-
out_stats() on the expert demonstrations loaded from path.

imitation.scripts.ingredients.reward

This ingredient provides a reward network.

Functions

config_hook(config, command_name, logger) Sets default values for net_cls and net_kwargs.
make_reward_net(venv, net_cls, net_kwargs, ...) Builds a reward network.

imitation.scripts.ingredients.reward.config_hook(config, command_name, logger)
Sets default values for net_cls and net_kwargs.

imitation.scripts.ingredients.reward.make_reward_net(venv, net_cls, net_kwargs,
normalize_output_layer, add_std_alpha,
ensemble_size, ensemble_member_config)

Builds a reward network.

Parameters

• venv (VecEnv) – Vectorized environment reward network will predict reward for.

• net_cls (Type[RewardNet]) – Class of reward network to construct.

• net_kwargs (Mapping[str, Any]) – Keyword arguments passed to reward network con-
structor.

• normalize_output_layer (Optional[Type[BaseNorm]]) – Wrapping the reward_net
with NormalizedRewardNet to normalize the reward output.

• add_std_alpha (Optional[float]) – multiple of reward function standard deviation to
add to the reward in predict_processed. Must be None when using a reward function that
does not keep track of variance. Defaults to None.

• ensemble_size (Optional[int]) – The number of ensemble members to create. Must set
if using net_cls = :class: reward_nets.RewardEnsemble.

• ensemble_member_config (Optional[Mapping[str, Any]]) – The configuration for in-
dividual ensemble members. Note that ensemble_member_config.net_cls must not be
:class: reward_nets.RewardEnsemble. Must be set if using net_cls = ` :class: `re-
ward_nets.RewardEnsemble.

Return type
RewardNet

Returns
A, possibly wrapped, instance of net_cls.
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Raises
ValueError – Using a reward ensemble but failed to provide configuration.

imitation.scripts.ingredients.rl

This ingredient provides a reinforcement learning algorithm from stable-baselines3.

The algorithm instance is either freshly constructed or loaded from a file.

Functions

config_hook(config, command_name, logger) Sets defaults equivalent to sb3.PPO default hyperparam-
eters.

load_rl_algo_from_path (_seed, agent_path, ...)
rtype

BaseAlgorithm

make_rl_algo(venv, rl_cls, batch_size, ...) Instantiates a Stable Baselines3 RL algorithm.

imitation.scripts.ingredients.rl.config_hook(config, command_name, logger)
Sets defaults equivalent to sb3.PPO default hyperparameters.

imitation.scripts.ingredients.rl.load_rl_algo_from_path(_seed, agent_path, venv, rl_cls, rl_kwargs,
relabel_reward_fn=None)

Return type
BaseAlgorithm

imitation.scripts.ingredients.rl.make_rl_algo(venv, rl_cls, batch_size, rl_kwargs, policy, _seed,
relabel_reward_fn=None)

Instantiates a Stable Baselines3 RL algorithm.

Parameters

• venv (VecEnv) – The vectorized environment to train on.

• rl_cls (Type[BaseAlgorithm]) – Type of a Stable Baselines3 RL algorithm.

• batch_size (int) – The batch size of the RL algorithm.

• rl_kwargs (Mapping[str, Any]) – Keyword arguments for RL algorithm constructor.

• policy (Mapping[str, Any]) – Configuration for the policy ingredient. We need the pol-
icy_cls and policy_kwargs component.

• relabel_reward_fn (Optional[RewardFn]) – Reward function used for reward relabel-
ing in replay or rollout buffers of RL algorithms.

Return type
BaseAlgorithm

Returns
The RL algorithm.

Raises

• ValueError – gen_batch_size not divisible by venv.num_envs.

• TypeError – rl_cls is neither OnPolicyAlgorithm nor OffPolicyAlgorithm.
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imitation.scripts.ingredients.wb

This ingredient provides Weights & Biases logging.

Functions

wandb_init(_run, wandb_name_prefix, ...) Putting everything together to get the W&B kwargs for
wandb.init().

imitation.scripts.ingredients.wb.wandb_init(_run, wandb_name_prefix, wandb_tag, wandb_kwargs,
wandb_additional_info, log_dir)

Putting everything together to get the W&B kwargs for wandb.init().

Parameters

• wandb_name_prefix (str) – User-specified prefix for wandb run name.

• wandb_tag (Optional[str]) – User-specified tag for this run.

• wandb_kwargs (Mapping[str, Any]) – User-specified kwargs for wandb.init().

• wandb_additional_info (Mapping[str, Any]) – User-specific additional info to add to
wandb experiment config.

• log_dir (str) – W&B logs will be stored in directory {log_dir}/wandb/.

Raises
ModuleNotFoundError – wandb is not installed.

Return type
None

imitation.scripts.train_adversarial

Train GAIL or AIRL.

Functions

airl()

gail()

main_console()

save(trainer, save_path) Save discriminator and generator.
train_adversarial(_run, show_config, ...) Train an adversarial-network-based imitation learning

algorithm.

imitation.scripts.train_adversarial.airl()

imitation.scripts.train_adversarial.gail()

imitation.scripts.train_adversarial.main_console()
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imitation.scripts.train_adversarial.save(trainer, save_path)
Save discriminator and generator.

imitation.scripts.train_adversarial.train_adversarial(_run, show_config, algo_cls,
algorithm_kwargs, total_timesteps,
checkpoint_interval, agent_path)

Train an adversarial-network-based imitation learning algorithm.

Checkpoints:

• AdversarialTrainer train and test RewardNets are saved to

f”{log_dir}/checkpoints/{step}/reward_{train,test}.pt”
where step is either the training round or “final”.

• Generator policies are saved to f”{log_dir}/checkpoints/{step}/gen_policy/”.

Parameters

• show_config (bool) – Print the merged config before starting training. This is analogous
to the print_config command, but will show config after rather than before merging algo-
rithm_specific arguments.

• algo_cls (Type[AdversarialTrainer]) – The adversarial imitation learning algorithm
to use.

• algorithm_kwargs (Mapping[str, Any]) – Keyword arguments for the GAIL or AIRL con-
structor.

• total_timesteps (int) – The number of transitions to sample from the environment dur-
ing training.

• checkpoint_interval (int) – Save the discriminator and generator models every check-
point_interval rounds and after training is complete. If 0, then only save weights after training
is complete. If <0, then don’t save weights at all.

• agent_path (Optional[str]) – Path to a directory containing a pre-trained agent. If pro-
vided, then the agent will be initialized using this stored policy (warm start). If not provided,
then the agent will be initialized using a random policy.

Return type
Mapping[str, Mapping[str, float]]

Returns
A dictionary with two keys. “imit_stats” gives the return value of rollout_stats() on rollouts
test-reward-wrapped environment, using the final policy (remember that the ground-truth reward
can be recovered from the “monitor_return” key). “expert_stats” gives the return value of roll-
out_stats() on the expert demonstrations.

imitation.scripts.train_imitation

Trains DAgger on synthetic demonstrations generated from an expert policy.
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Functions

bc(bc, _run, _rnd) Runs BC training.
dagger(bc, dagger, _run, _rnd) Runs DAgger training.
main_console()

imitation.scripts.train_imitation.bc(bc, _run, _rnd)
Runs BC training.

Parameters

• bc (Dict[str, Any]) – Configuration for BC training.

• _run – Sacred run object.

• _rnd (Generator) – Random number generator provided by Sacred.

Return type
Mapping[str, Mapping[str, float]]

Returns
Statistics for rollouts from the trained policy and demonstration data.

imitation.scripts.train_imitation.dagger(bc, dagger, _run, _rnd)
Runs DAgger training.

Parameters

• bc (Dict[str, Any]) – Configuration for BC training.

• dagger (Mapping[str, Any]) – Arguments for DAgger training.

• _run – Sacred run object.

• _rnd (Generator) – Random number generator provided by Sacred.

Return type
Mapping[str, Mapping[str, float]]

Returns
Statistics for rollouts from the trained policy and demonstration data.

imitation.scripts.train_imitation.main_console()

imitation.scripts.train_preference_comparisons

Train a reward model using preference comparisons.

Can be used as a CLI script, or the train_preference_comparisons function can be called directly.
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Functions

main_console()

save_checkpoint(trainer, save_path, ...) Save reward model and optionally policy.
save_model(agent_trainer, save_path) Save the model as model.zip.
train_preference_comparisons(...) Train a reward model using preference comparisons.

imitation.scripts.train_preference_comparisons.main_console()

imitation.scripts.train_preference_comparisons.save_checkpoint(trainer, save_path,
allow_save_policy)

Save reward model and optionally policy.

imitation.scripts.train_preference_comparisons.save_model(agent_trainer, save_path)
Save the model as model.zip.

imitation.scripts.train_preference_comparisons.train_preference_comparisons(total_timesteps,
to-
tal_comparisons,
num_iterations,
compari-
son_queue_size,
fragment_length,
transi-
tion_oversampling,
ini-
tial_comparison_frac,
exploration_frac,
trajectory_path,
trajec-
tory_generator_kwargs,
save_preferences,
agent_path,
prefer-
ence_model_kwargs,
re-
ward_trainer_kwargs,
gatherer_cls,
gatherer_kwargs,
active_selection,
ac-
tive_selection_oversampling,
uncertainty_on,
frag-
menter_kwargs,
al-
low_variable_horizon,
check-
point_interval,
query_schedule,
_rnd)

Train a reward model using preference comparisons.
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Parameters

• total_timesteps (int) – number of environment interaction steps

• total_comparisons (int) – number of preferences to gather in total

• num_iterations (int) – number of times to train the agent against the reward model and
then train the reward model against newly gathered preferences.

• comparison_queue_size (Optional[int]) – the maximum number of comparisons to
keep in the queue for training the reward model. If None, the queue will grow without bound
as new comparisons are added.

• fragment_length (int) – number of timesteps per fragment that is used to elicit prefer-
ences

• transition_oversampling (float) – factor by which to oversample transitions before
creating fragments. Since fragments are sampled with replacement, this is usually chosen >
1 to avoid having the same transition in too many fragments.

• initial_comparison_frac (float) – fraction of total_comparisons that will be sampled
before the rest of training begins (using the randomly initialized agent). This can be used to
pretrain the reward model before the agent is trained on the learned reward.

• exploration_frac (float) – fraction of trajectory samples that will be created using par-
tially random actions, rather than the current policy. Might be helpful if the learned policy
explores too little and gets stuck with a wrong reward.

• trajectory_path (Optional[str]) – either None, in which case an agent will be trained
and used to sample trajectories on the fly, or a path to a pickled sequence of TrajectoryWith-
Rew to be trained on.

• trajectory_generator_kwargs (Mapping[str, Any]) – kwargs to pass to the trajectory
generator.

• save_preferences (bool) – if True, store the final dataset of preferences to disk.

• agent_path (Optional[str]) – if given, initialize the agent using this stored policy rather
than randomly.

• preference_model_kwargs (Mapping[str, Any]) – passed to PreferenceModel

• reward_trainer_kwargs (Mapping[str, Any]) – passed to BasicRewardTrainer or En-
sembleRewardTrainer

• gatherer_cls (Type[PreferenceGatherer]) – type of PreferenceGatherer to use (de-
faults to SyntheticGatherer)

• gatherer_kwargs (Mapping[str, Any]) – passed to the PreferenceGatherer specified by
gatherer_cls

• active_selection (bool) – use active selection fragmenter instead of random fragmenter

• active_selection_oversampling (int) – factor by which to oversample random frag-
ments from the base fragmenter of active selection. this is usually chosen > 1 to allow the
active selection algorithm to pick fragment pairs with highest uncertainty. = 1 implies no
active selection.

• uncertainty_on (str) – passed to ActiveSelectionFragmenter

• fragmenter_kwargs (Mapping[str, Any]) – passed to RandomFragmenter

• allow_variable_horizon (bool) – If False (default), algorithm will raise an exception if
it detects trajectories of different length during training. If True, overrides this safety check.
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WARNING: variable horizon episodes leak information about the reward via termination
condition, and can seriously confound evaluation. Read https://imitation.readthedocs.io/en/
latest/guide/variable_horizon.html before overriding this.

• checkpoint_interval (int) – Save the reward model and policy models (if trajec-
tory_generator contains a policy) every checkpoint_interval iterations and after training is
complete. If 0, then only save weights after training is complete. If <0, then don’t save
weights at all.

• query_schedule (Union[str, Callable[[float], float]]) – one of (“constant”, “hy-
perbolic”, “inverse_quadratic”). A function indicating how the total number of preference
queries should be allocated to each iteration. “hyperbolic” and “inverse_quadratic” appor-
tion fewer queries to later iterations when the policy is assumed to be better and more stable.

• _rnd (Generator) – Random number generator provided by Sacred.

Return type
Mapping[str, Any]

Returns
Rollout statistics from trained policy.

Raises
ValueError – Inconsistency between config and deserialized policy normalization.

imitation.scripts.train_rl

Uses RL to train a policy from scratch, saving rollouts and policy.

This can be used:

1. To train a policy on a ground-truth reward function, as a source of synthetic “expert” demonstrations to
train IRL or imitation learning algorithms.

2. To train a policy on a learned reward function, to solve a task or as a way of evaluating the quality of the
learned reward function.

Functions

main_console()

train_rl(*, total_timesteps, ...) Trains an expert policy from scratch and saves the roll-
outs and policy.

imitation.scripts.train_rl.main_console()

imitation.scripts.train_rl.train_rl(*, total_timesteps, normalize_reward, normalize_kwargs,
reward_type, reward_path, load_reward_kwargs, rollout_save_final,
rollout_save_n_timesteps, rollout_save_n_episodes,
policy_save_interval, policy_save_final, agent_path, _rnd)

Trains an expert policy from scratch and saves the rollouts and policy.

Checkpoints:
At applicable training steps step (where step is either an integer or “final”):

• Policies are saved to {log_dir}/policies/{step}/.
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• Rollouts are saved to {log_dir}/rollouts/{step}.npz.

Parameters

• total_timesteps (int) – Number of training timesteps in model.learn().

• normalize_reward (bool) – Applies normalization and clipping to the reward function by
keeping a running average of training rewards. Note: this is may be redundant if using a
learned reward that is already normalized.

• normalize_kwargs (dict) – kwargs for VecNormalize.

• reward_type (Optional[str]) – If provided, then load the serialized reward of this type,
wrapping the environment in this reward. This is useful to test whether a reward model
transfers. For more information, see imitation.rewards.serialize.load_reward.

• reward_path (Optional[str]) – A specifier, such as a path to a file on disk,
used by reward_type to load the reward model. For more information, see imita-
tion.rewards.serialize.load_reward.

• load_reward_kwargs (Optional[Mapping[str, Any]]) – Additional kwargs to pass to
predict_processed. Examples are ‘alpha’ for :class: AddSTDRewardWrapper and ‘up-
date_stats’ for :class: NormalizedRewardNet.

• rollout_save_final (bool) – If True, then save rollouts right after training is finished.

• rollout_save_n_timesteps (Optional[int]) – The minimum number of timesteps
saved in every file. Could be more than rollout_save_n_timesteps because trajectories are
saved by episode rather than by transition. Must set exactly one of rollout_save_n_timesteps
and rollout_save_n_episodes.

• rollout_save_n_episodes (Optional[int]) – The number of episodes saved in every
file. Must set exactly one of rollout_save_n_timesteps and rollout_save_n_episodes.

• policy_save_interval (int) – The number of training updates between in between inter-
mediate rollout saves. If the argument is nonpositive, then don’t save intermediate updates.

• policy_save_final (bool) – If True, then save the policy right after training is finished.

• agent_path (Optional[str]) – Path to load warm-started agent.

• _rnd (Generator) – Random number generator provided by Sacred.

Return type
Mapping[str, float]

Returns
The return value of rollout_stats() using the final policy.

3.1.7 imitation.testing

Helper methods for unit tests.

May also be useful for users of imitation.
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Modules

imitation.testing.expert_trajectories Test utilities to conveniently generate expert trajectories.
imitation.testing.reward_improvement Utility functions used to check if rewards improved wrt

to previous rewards.
imitation.testing.reward_nets Utility functions for testing reward nets.

imitation.testing.expert_trajectories

Test utilities to conveniently generate expert trajectories.

Functions

generate_expert_trajectories(env_id, ...) Generate expert trajectories for the given environment.
lazy_generate_expert_trajectories(...) Generate or load expert trajectories from cache.
make_expert_transition_loader(cache_dir, ...) Creates different kinds of PyTorch data loaders for expert

transitions.

imitation.testing.expert_trajectories.generate_expert_trajectories(env_id, num_trajectories,
rng)

Generate expert trajectories for the given environment.

Note: will just pull a pretrained policy from the Hugging Face model hub.

Parameters

• env_id (str) – The environment to generate trajectories for.

• num_trajectories (int) – The number of trajectories to generate.

• rng (Generator) – The random number generator to use.

Return type
Sequence[TrajectoryWithRew]

Returns
A list of trajectories with rewards.

imitation.testing.expert_trajectories.lazy_generate_expert_trajectories(cache_path, env_id,
num_trajectories,
rng)

Generate or load expert trajectories from cache.

Parameters

• cache_path (PathLike) – A path to the folder to be used as cache for the expert trajectories.

• env_id (str) – The environment to generate trajectories for.

• num_trajectories (int) – The number of trajectories to generate.

• rng (Generator) – The random number generator to use.

Return type
Sequence[TrajectoryWithRew]
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Returns
A list of trajectories with rewards.

imitation.testing.expert_trajectories.make_expert_transition_loader(cache_dir, batch_size,
expert_data_type,
env_name, rng,
num_trajectories=1)

Creates different kinds of PyTorch data loaders for expert transitions.

Parameters

• cache_dir (Path) – The directory to use for caching the expert trajectories.

• batch_size (int) – The batch size to use for the data loader.

• expert_data_type (str) – The type of expert data to use. Can be one of “data_loader”,
“ducktyped_data_loader”, “transitions”.

• env_name (str) – The environment to generate trajectories for.

• rng (Generator) – The random number generator to use.

• num_trajectories (int) – The number of trajectories to generate.

Raises
ValueError – If expert_data_type is not one of the supported types.

Returns
A pytorch data loader for expert transitions.

imitation.testing.reward_improvement

Utility functions used to check if rewards improved wrt to previous rewards.

Functions

is_significant_reward_improvement(...[,
p_value])

Checks if the new rewards are really better than the old
rewards.

mean_reward_improved_by(old_rews, new_rews, ...) Checks if mean rewards improved wrt.

imitation.testing.reward_improvement.is_significant_reward_improvement(old_rewards,
new_rewards,
p_value=0.05)

Checks if the new rewards are really better than the old rewards.

Ensures that this is not just due to lucky sampling by a permutation test.

Parameters

• old_rewards (Iterable[float]) – Iterable of “old” trajectory rewards (e.g. before train-
ing).

• new_rewards (Iterable[float]) – Iterable of “new” trajectory rewards (e.g. after train-
ing).

• p_value (float) – The maximum probability, that the old rewards are just as good as the
new rewards, that we tolerate.
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Return type
bool

Returns
True, if the new rewards are most probably better than the old rewards. For this, the probability,
that the old rewards are just as good as the new rewards must be below p_value.

>>> is_significant_reward_improvement((5, 6, 7, 4, 4), (7, 5, 9, 9, 12))
True

>>> is_significant_reward_improvement((5, 6, 7, 4, 4), (7, 5, 9, 7, 4))
False

>>> is_significant_reward_improvement((5, 6, 7, 4, 4), (7, 5, 9, 7, 4), p_value=0.3)
True

imitation.testing.reward_improvement.mean_reward_improved_by(old_rews, new_rews,
min_improvement)

Checks if mean rewards improved wrt. to old rewards by a certain amount.

Parameters

• old_rews (Iterable[float]) – Iterable of “old” trajectory rewards (e.g. before training).

• new_rews (Iterable[float]) – Iterable of “new” trajectory rewards (e.g. after training).

• min_improvement (float) – The minimum amount of improvement that we expect.

Returns
True if the mean of the new rewards is larger than the mean of the old rewards by
min_improvement.

>>> mean_reward_improved_by([5, 8, 7], [8, 9, 10], 2)
True

>>> mean_reward_improved_by([5, 8, 7], [8, 9, 10], 5)
False

imitation.testing.reward_nets

Utility functions for testing reward nets.

Functions

make_ensemble(obs_space, action_space[, ...]) Create a simple reward ensemble.
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Classes

MockRewardNet(observation_space, action_space) A mock reward net for testing.

class imitation.testing.reward_nets.MockRewardNet(observation_space, action_space, value=0.0)
Bases: RewardNet

A mock reward net for testing.

__init__(observation_space, action_space, value=0.0)
Create mock reward.

Parameters

• observation_space (Space) – observation space of the env

• action_space (Space) – action space of the env

• value (float) – The reward to always return. Defaults to 0.0.

forward(state, action, next_state, done)
Compute rewards for a batch of transitions and keep gradients.

Return type
Tensor

training: bool

imitation.testing.reward_nets.make_ensemble(obs_space, action_space, num_members=2, **kwargs)
Create a simple reward ensemble.

3.1.8 imitation.util

General utility functions: e.g. logging, configuration, etc.

Modules

imitation.util.logger Logging for quantitative metrics and free-form text.
imitation.util.networks Helper methods to build and run neural networks.
imitation.util.registry Registry mapping IDs to objects, such as environments

or policy loaders.
imitation.util.sacred Helper methods for the sacred experimental configura-

tion and logging framework.
imitation.util.util Miscellaneous utility methods.
imitation.util.video_wrapper Wrapper to record rendered video frames from an envi-

ronment.

3.1. imitation 223



imitation

imitation.util.logger

Logging for quantitative metrics and free-form text.

Functions

configure([folder, format_strs]) Configure Stable Baselines logger to be accumu-
late_means()-compatible.

make_output_format(_format, log_dir[, ...]) Returns a logger for the requested format.

Classes

HierarchicalLogger(default_logger[, format_strs]) A logger supporting contexts for accumulating mean
values.

WandbOutputFormat() A stable-baseline logger that writes to wandb.

class imitation.util.logger.HierarchicalLogger(default_logger, format_strs=('stdout', 'log', 'csv'))
Bases: Logger

A logger supporting contexts for accumulating mean values.

self.accumulate_means creates a context manager. While in this context, values are loggged to a sub-logger, with
only mean values recorded in the top-level (root) logger.

>>> import tempfile
>>> with tempfile.TemporaryDirectory() as dir:
... logger: HierarchicalLogger = configure(dir, ('log',))
... # record the key value pair (loss, 1.0) to path `dir`
... # at step 1.
... logger.record("loss", 1.0)
... logger.dump(step=1)
... with logger.accumulate_means("dataset"):
... # record the key value pair `("raw/dataset/entropy", 5.0)` to path
... # `dir/raw/dataset` at step 100
... logger.record("entropy", 5.0)
... logger.dump(step=100)
... # record the key value pair `("raw/dataset/entropy", 6.0)` to path
... # `dir/raw/dataset` at step 200
... logger.record("entropy", 6.0)
... logger.dump(step=200)
... # record the key value pair `("mean/dataset/entropy", 5.5)` to path
... # `dir` at step 1.
... logger.dump(step=1)
... with logger.add_accumulate_prefix("foo"), logger.accumulate_means("bar"):
... # record the key value pair ("raw/foo/bar/biz", 42.0) to path
... # `dir/raw/foo/bar` at step 2000
... logger.record("biz", 42.0)
... logger.dump(step=2000)
... # record the key value pair `("mean/foo/bar/biz", 42.0)` to path
... # `dir` at step 1.
... logger.dump(step=1)

(continues on next page)
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(continued from previous page)

... with open(os.path.join(dir, 'log.txt')) as f:

... print(f.read())
-------------------
| loss | 1 |
-------------------
---------------------------------
| mean/ | |
| dataset/entropy | 5.5 |
---------------------------------
-----------------------------
| mean/ | |
| foo/bar/biz | 42 |
-----------------------------

__init__(default_logger, format_strs=('stdout', 'log', 'csv'))
Builds HierarchicalLogger.

Parameters

• default_logger (Logger) – The default logger when not in an accumulate_means con-
text. Also the logger to which mean values are written to after exiting from a context.

• format_strs (Sequence[str]) – A list of output format strings that should be used by
every Logger initialized by this class during an AccumulatingMeans context. For details
on available output formats see stable_baselines3.logger.make_output_format.

accumulate_means(name)
Temporarily modifies this HierarchicalLogger to accumulate means values.

Within this context manager, self.record(key, value) writes the “raw” values in f"{self.
default_logger.log_dir}/[{accumulate_prefix}/]{name}" under the key "raw/
[{accumulate_prefix}/]{name}/[{key_prefix}/]{key}", where accumulate_prefix is
the concatenation of all prefixes added by add_accumulate_prefix and key_prefix is the concatena-
tion of all prefixes added by add_key_prefix, if any. At the same time, any call to self.record will
also accumulate mean values on the default logger by calling:

self.default_logger.record_mean(
f"mean/[{accumulate_prefix}/]{name}/[{key_prefix}/]{key}",
value,

)

Multiple prefixes may be active at once. In this case the prefix is simply the concatenation of each of the
active prefixes in the order they were created e.g. if the active prefixes are ['foo', 'bar'] then the prefix
is 'foo/bar'.

After the context exits, calling self.dump() will write the means of all the “raw” values accumulated
during this context to self.default_logger under keys of the form mean/{prefix}/{name}/{key}

Note that the behavior of other logging methods, log and record_mean are unmodified and will go straight
to the default logger.

Parameters
name (str) – A string key which determines the folder where raw data is written and tem-
porary logging prefixes for raw and mean data. Entering an accumulate_means context in
the future with the same subdir will safely append to logs written in this folder rather than
overwrite.
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Yields
None when the context is entered.

Raises
RuntimeError – If this context is entered into while already in an accumulate_means con-
text.

Return type
Generator[None, None, None]

add_accumulate_prefix(prefix)
Add a prefix to the subdirectory used to accumulate means.

This prefix only applies when a accumulate_means context is active. If there are multiple active prefixes,
then they are concatenated.

Parameters
prefix (str) – The prefix to add to the named sub.

Yields
None when the context manager is entered

Raises
RuntimeError – if accumulate means context is already active.

Return type
Generator[None, None, None]

add_key_prefix(prefix)
Add a prefix to the keys logged during an accumulate_means context.

This prefix only applies when a accumulate_means context is active. If there are multiple active prefixes,
then they are concatenated.

Parameters
prefix (str) – The prefix to add to the keys.

Yields
None when the context manager is entered

Raises
RuntimeError – if accumulate means context is already active.

Return type
Generator[None, None, None]

close()

closes the file

current_logger: Optional[Logger]

default_logger: Logger

dump(step=0)
Write all of the diagnostics from the current iteration

format_strs: Sequence[str]

get_accumulate_prefixes()

Return type
str
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get_dir()

Get directory that log files are being written to. will be None if there is no output directory (i.e., if you
didn’t call start)

Return type
str

Returns
the logging directory

log(*args, **kwargs)
Write the sequence of args, with no separators, to the console and output files (if you’ve configured an
output file).

level: int. (see logger.py docs) If the global logger level is higher than
the level argument here, don’t print to stdout.

Parameters

• args – log the arguments

• level – the logging level (can be DEBUG=10, INFO=20, WARN=30, ERROR=40, DIS-
ABLED=50)

record(key, val, exclude=None)
Log a value of some diagnostic Call this once for each diagnostic quantity, each iteration If called many
times, last value will be used.

Parameters

• key – save to log this key

• value – save to log this value

• exclude – outputs to be excluded

record_mean(key, val, exclude=None)
The same as record(), but if called many times, values averaged.

Parameters

• key – save to log this key

• value – save to log this value

• exclude – outputs to be excluded

set_level(level)
Set logging threshold on current logger.

Parameters
level (int) – the logging level (can be DEBUG=10, INFO=20, WARN=30, ERROR=40,
DISABLED=50)

Return type
None

class imitation.util.logger.WandbOutputFormat

Bases: KVWriter

A stable-baseline logger that writes to wandb.

Users need to call wandb.init() before initializing WandbOutputFormat.
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__init__()

Initializes an instance of WandbOutputFormat.

Raises
ModuleNotFoundError – wandb is not installed.

close()

Close owned resources

Return type
None

write(key_values, key_excluded, step=0)
Write a dictionary to file

Parameters

• key_values (Dict[str, Any]) –

• key_excluded (Dict[str, Union[str, Tuple[str, ...]]]) –

• step (int) –

Return type
None

imitation.util.logger.configure(folder=None, format_strs=None)
Configure Stable Baselines logger to be accumulate_means()-compatible.

After this function is called, stable_baselines3.logger.{configure,reset}() are replaced with stubs that raise Run-
timeError.

Parameters

• folder (Union[str, bytes, PathLike, None]) – Argument from sta-
ble_baselines3.logger.configure.

• format_strs (Optional[Sequence[str]]) – An list of output format strings. For details
on available output formats see stable_baselines3.logger.make_output_format.

Return type
HierarchicalLogger

Returns
The configured HierarchicalLogger instance.

imitation.util.logger.make_output_format(_format, log_dir, log_suffix='', max_length=50)
Returns a logger for the requested format.

Parameters

• _format (str) – the requested format to log to (‘stdout’, ‘log’, ‘json’ or ‘csv’ or ‘tensor-
board’).

• log_dir (str) – the logging directory.

• log_suffix (str) – the suffix for the log file.

• max_length (int) – the maximum length beyond which the keys get truncated.

Return type
KVWriter

Returns
the logger.
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imitation.util.networks

Helper methods to build and run neural networks.

Functions

build_cnn(in_channels, hid_channels[, ...]) Constructs a Torch CNN.
build_mlp(in_size, hid_sizes[, out_size, ...]) Constructs a Torch MLP.
training_mode(m[, mode]) Temporarily switch module m to specified training mode.

Classes

BaseNorm(num_features[, eps]) Base class for layers that try to normalize the input to
mean 0 and variance 1.

EMANorm(num_features[, decay, eps]) Similar to RunningNorm but uses an exponential
weighting.

RunningNorm(num_features[, eps]) Normalizes input to mean 0 and standard deviation 1 us-
ing a running average.

SqueezeLayer(*args, **kwargs) Torch module that squeezes a B*1 tensor down into a
size-B vector.

class imitation.util.networks.BaseNorm(num_features, eps=1e-05)
Bases: Module, ABC

Base class for layers that try to normalize the input to mean 0 and variance 1.

Similar to BatchNorm, LayerNorm, etc. but whereas they only use statistics from the current batch at train time,
we use statistics from all batches.

__init__(num_features, eps=1e-05)
Builds RunningNorm.

Parameters

• num_features (int) – Number of features; the length of the non-batch dimension.

• eps (float) – Small constant for numerical stability. Inputs are rescaled by 1 /
sqrt(estimated_variance + eps).

count: Tensor

forward(x)
Updates statistics if in training mode. Returns normalized x.

Return type
Tensor

reset_running_stats()

Resets running stats to defaults, yielding the identity transformation.

Return type
None

running_mean: Tensor
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running_var: Tensor

abstract update_stats(batch)
Update self.running_mean, self.running_var and self.count.

Return type
None

class imitation.util.networks.EMANorm(num_features, decay=0.99, eps=1e-05)
Bases: BaseNorm

Similar to RunningNorm but uses an exponential weighting.

__init__(num_features, decay=0.99, eps=1e-05)
Builds EMARunningNorm.

Parameters

• num_features (int) – Number of features; the length of the non-batch dim.

• decay (float) – how quickly the weight on past samples decays over time.

• eps (float) – small constant for numerical stability.

Raises
ValueError – if decay is out of range.

inv_learning_rate: Tensor

num_batches: IntTensor

reset_running_stats()

Reset the running stats of the normalization layer.

update_stats(batch)
Update self.running_mean and self.running_var in batch mode.

Reference Algorithm 3 from: https://github.com/HumanCompatibleAI/imitation/files/9456540/
Incremental_batch_EMA_and_EMV.pdf

Parameters
batch (Tensor) – A batch of data to use to update the running mean and variance.

Return type
None

class imitation.util.networks.RunningNorm(num_features, eps=1e-05)
Bases: BaseNorm

Normalizes input to mean 0 and standard deviation 1 using a running average.

Similar to BatchNorm, LayerNorm, etc. but whereas they only use statistics from the current batch at train time,
we use statistics from all batches.

This should replicate the common practice in RL of normalizing environment observations, such as using
VecNormalize in Stable Baselines. Note that the behavior of this class is slightly different from VecNormal-
ize, e.g., it works with the current reward instead of return estimate, and subtracts the mean reward whereas
VecNormalize only rescales it.

count: Tensor

running_mean: Tensor
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running_var: Tensor

training: bool

update_stats(batch)
Update self.running_mean, self.running_var and self.count.

Uses Chan et al (1979), “Updating Formulae and a Pairwise Algorithm for Computing Sample Variances.”
to update the running moments in a numerically stable fashion.

Parameters
batch (Tensor) – A batch of data to use to update the running mean and variance.

Return type
None

class imitation.util.networks.SqueezeLayer(*args, **kwargs)
Bases: Module

Torch module that squeezes a B*1 tensor down into a size-B vector.

forward(x)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks while
the latter silently ignores them.

training: bool

imitation.util.networks.build_cnn(in_channels, hid_channels, out_size=1, name=None, activation=<class
'torch.nn.modules.activation.ReLU'>, kernel_size=3, stride=1,
padding='same', dropout_prob=0.0, squeeze_output=False)

Constructs a Torch CNN.

Parameters

• in_channels (int) – number of channels of individual inputs; input to the CNN will have
shape (batch_size, in_size, in_height, in_width).

• hid_channels (Iterable[int]) – number of channels of hidden layers. If this is an empty
iterable, then we build a linear function approximator.

• out_size (int) – size of output vector.

• name (Optional[str]) – Name to use as a prefix for the layers ID.

• activation (Type[Module]) – activation to apply after hidden layers.

• kernel_size (int) – size of convolutional kernels.

• stride (int) – stride of convolutional kernels.

• padding (Union[int, str]) – padding of convolutional kernels.

• dropout_prob (float) – Dropout probability to use after each hidden layer. If 0, no dropout
layers are added to the network.

• squeeze_output (bool) – if out_size=1, then squeeze_input=True ensures that CNN out-
put is of size (B,) instead of (B,1).
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Returns

a CNN mapping from inputs of size (batch_size, in_size, in_height,
in_width) to (batch_size, out_size), unless out_size=1 and squeeze_output=True, in which
case the output is of size (batch_size, ).

Return type
nn.Module

Raises
ValueError – if squeeze_output was supplied with out_size!=1.

imitation.util.networks.build_mlp(in_size, hid_sizes, out_size=1, name=None, activation=<class
'torch.nn.modules.activation.ReLU'>, dropout_prob=0.0,
squeeze_output=False, flatten_input=False,
normalize_input_layer=None)

Constructs a Torch MLP.

Parameters

• in_size (int) – size of individual input vectors; input to the MLP will be of shape
(batch_size, in_size).

• hid_sizes (Iterable[int]) – sizes of hidden layers. If this is an empty iterable, then we
build a linear function approximator.

• out_size (int) – size of output vector.

• name (Optional[str]) – Name to use as a prefix for the layers ID.

• activation (Type[Module]) – activation to apply after hidden layers.

• dropout_prob (float) – Dropout probability to use after each hidden layer. If 0, no dropout
layers are added to the network.

• squeeze_output (bool) – if out_size=1, then squeeze_input=True ensures that MLP out-
put is of size (B,) instead of (B,1).

• flatten_input (bool) – should input be flattened along axes 1, 2, 3, . . . ? Useful if you
want to, e.g., process small images inputs with an MLP.

• normalize_input_layer (Optional[Type[Module]]) – if specified, module to use to nor-
malize inputs; e.g. nn.BatchNorm or RunningNorm.

Returns

an MLP mapping from inputs of size (batch_size, in_size) to
(batch_size, out_size), unless out_size=1 and squeeze_output=True, in which case the output
is of size (batch_size, ).

Return type
nn.Module

Raises
ValueError – if squeeze_output was supplied with out_size!=1.

imitation.util.networks.evaluating(m: Module, *, mode: bool = False)
Temporarily switch module m to specified training mode.

Parameters

• m – The module to switch the mode of.

• mode – whether to set training mode (True) or evaluation (False).
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Yields
The module m.

imitation.util.networks.training(m: Module, *, mode: bool = True)
Temporarily switch module m to specified training mode.

Parameters

• m – The module to switch the mode of.

• mode – whether to set training mode (True) or evaluation (False).

Yields
The module m.

imitation.util.networks.training_mode(m, mode=False)
Temporarily switch module m to specified training mode.

Parameters

• m (Module) – The module to switch the mode of.

• mode (bool) – whether to set training mode (True) or evaluation (False).

Yields
The module m.

imitation.util.registry

Registry mapping IDs to objects, such as environments or policy loaders.

Module Attributes

LoaderFn The type stored in Registry is commonly an instance of
LoaderFn.

Functions

build_loader_fn_require_env(fn, **kwargs) Converts a factory taking an environment into a Load-
erFn.

build_loader_fn_require_space(fn, **kwargs) Converts a factory taking observation and action space
into a LoaderFn.

load_attr(name) Load an attribute in format path.to.module:attribute.

Classes

Registry() A registry mapping IDs to type T objects, with support
for lazy loading.

imitation.util.registry.LoaderFn

The type stored in Registry is commonly an instance of LoaderFn.

alias of Callable[[. . . ], T]
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class imitation.util.registry.Registry

Bases: Generic[T]

A registry mapping IDs to type T objects, with support for lazy loading.

The registry allows for insertion and retrieval. Modification of existing elements is not allowed.

If the registered item is a string, it is assumed to be a path to an attribute in the form path.to.module:attribute. In
this case, the module is loaded only if and when the registered item is retrieved.

This is helpful both to reduce overhead from importing unused modules, and when some modules may have
additional dependencies that are not installed in all deployments.

Note: This is a similar idea to gym.EnvRegistry.

__init__()

Builds empty Registry.

get(key)

Return type
TypeVar(T)

keys()

Return type
Iterable[str]

register(key, *, value=None, indirect=None)

imitation.util.registry.build_loader_fn_require_env(fn, **kwargs)
Converts a factory taking an environment into a LoaderFn.

Return type
Callable[..., TypeVar(T)]

imitation.util.registry.build_loader_fn_require_space(fn, **kwargs)
Converts a factory taking observation and action space into a LoaderFn.

Return type
Callable[..., TypeVar(T)]

imitation.util.registry.load_attr(name)
Load an attribute in format path.to.module:attribute.

imitation.util.sacred

Helper methods for the sacred experimental configuration and logging framework.
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Functions

build_sacred_symlink(log_dir, run) Constructs a symlink "{log_dir}/sacred" => "${SA-
CRED_PATH}".

dict_get_nested(d, nested_key, *[, sep, default])
rtype

Any

dir_contains_sacred_jsons(dir_path)
rtype

bool

filter_subdirs(root_dir[, filter_fn, nested_ok]) Walks through a directory tree, returning paths to filtered
subdirectories.

get_sacred_dir_from_run(run) Returns path to the sacred directory, or None if not
found.

Classes

SacredDicts(sacred_dir, config, run) Each dict foo is loaded from f"{sacred_dir}/foo.json".

class imitation.util.sacred.SacredDicts(sacred_dir: Path, config: dict, run: dict)
Bases: tuple

Each dict foo is loaded from f”{sacred_dir}/foo.json”.

config: dict

classmethod load_from_dir(sacred_dir)

run: dict

sacred_dir: Path

imitation.util.sacred.build_sacred_symlink(log_dir, run)
Constructs a symlink “{log_dir}/sacred” => “${SACRED_PATH}”.

Return type
None

imitation.util.sacred.dict_get_nested(d, nested_key, *, sep='.', default=None)

Return type
Any

imitation.util.sacred.dir_contains_sacred_jsons(dir_path)

Return type
bool

imitation.util.sacred.filter_subdirs(root_dir, filter_fn=<function dir_contains_sacred_jsons>, *,
nested_ok=False)

Walks through a directory tree, returning paths to filtered subdirectories.

Does not follow symlinks.

3.1. imitation 235



imitation

Parameters

• root_dir (Path) – The start of the directory tree walk.

• filter_fn (Callable[[Path], bool]) – A function with takes a directory path and returns
True if we should include the directory path in this function’s return value.

• nested_ok (bool) – Allow returning “nested” directories, i.e. a return value where some
elements are subdirectories of other elements.

Return type
Sequence[Path]

Returns
A list of all subdirectory paths where filter_fn(path) == True.

Raises
ValueError – If nested_ok is False and one of the filtered directory paths is a subdirecotry of
another.

imitation.util.sacred.get_sacred_dir_from_run(run)
Returns path to the sacred directory, or None if not found.

Return type
Optional[Path]

imitation.util.util

Miscellaneous utility methods.

Functions

docstring_parameter(*args, **kwargs) Treats the docstring as a format string, substituting in the
arguments.

endless_iter(iterable) Generator that endlessly yields elements from iterable.
get_first_iter_element(iterable) Get first element of an iterable and a new fresh iterable.
make_seeds() Generate n random seeds from a random state.
make_unique_timestamp() Timestamp, with random uuid added to avoid collisions.
make_vec_env(env_name, *, rng[, n_envs, ...]) Makes a vectorized environment.
oric(x) Optimal rounding under integer constraints.
parse_optional_path (path[, allow_relative, ...]) Parse an optional path to a pathlib.Path object.
parse_path (path[, allow_relative, ...]) Parse a path to a pathlib.Path object.
safe_to_numpy() Convert torch tensor to numpy.
safe_to_tensor(array, **kwargs) Converts a NumPy array to a PyTorch tensor.
tensor_iter_norm(tensor_iter[, ord]) Compute the norm of a big vector that is produced one

tensor chunk at a time.

imitation.util.util.docstring_parameter(*args, **kwargs)
Treats the docstring as a format string, substituting in the arguments.

imitation.util.util.endless_iter(iterable)
Generator that endlessly yields elements from iterable.
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>>> x = range(2)
>>> it = endless_iter(x)
>>> next(it)
0
>>> next(it)
1
>>> next(it)
0

Parameters
iterable (Iterable[TypeVar(T)]) – The non-iterator iterable object to endlessly iterate over.

Return type
Iterator[TypeVar(T)]

Returns
An iterator that repeats the elements in iterable forever.

Raises
ValueError – if iterable is an iterator – that will be exhausted, so cannot be iterated over end-
lessly.

imitation.util.util.get_first_iter_element(iterable)
Get first element of an iterable and a new fresh iterable.

The fresh iterable has the first element added back using itertools.chain. If the iterable is not an iterator,
this is equivalent to (next(iter(iterable)), iterable).

Parameters
iterable (Iterable[TypeVar(T)]) – The iterable to get the first element of.

Return type
Tuple[TypeVar(T), Iterable[TypeVar(T)]]

Returns
A tuple containing the first element of the iterable, and a fresh iterable with all the elements.

Raises
ValueError – iterable is empty – the first call to it returns no elements.

imitation.util.util.make_seeds(rng: Generator)→ int
imitation.util.util.make_seeds(rng: Generator, n: int)→ List[int]

Generate n random seeds from a random state.

Parameters

• rng (Generator) – The random state to use to generate seeds.

• n (Optional[int]) – The number of seeds to generate.

Return type
Union[Sequence[int], int]

Returns
A list of n random seeds.

imitation.util.util.make_unique_timestamp()

Timestamp, with random uuid added to avoid collisions.
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Return type
str

imitation.util.util.make_vec_env(env_name, *, rng, n_envs=8, parallel=False, log_dir=None,
max_episode_steps=None, post_wrappers=None,
env_make_kwargs=None)

Makes a vectorized environment.

Parameters

• env_name (str) – The Env’s string id in Gym.

• rng (Generator) – The random state to use to seed the environment.

• n_envs (int) – The number of duplicate environments.

• parallel (bool) – If True, uses SubprocVecEnv; otherwise, DummyVecEnv.

• log_dir (Optional[str]) – If specified, saves Monitor output to this directory.

• max_episode_steps (Optional[int]) – If specified, wraps each env in a TimeLimit wrap-
per with this episode length. If not specified and max_episode_steps exists for this env_name
in the Gym registry, uses the registry max_episode_steps for every TimeLimit wrapper (this
automatic wrapper is the default behavior when calling gym.make). Otherwise the environ-
ments are passed into the VecEnv unwrapped.

• post_wrappers (Optional[Sequence[Callable[[Env, int], Env]]]) – If specified, iter-
atively wraps each environment with each of the wrappers specified in the sequence. The
argument should be a Callable accepting two arguments, the Env to be wrapped and the
environment index, and returning the wrapped Env.

• env_make_kwargs (Optional[Mapping[str, Any]]) – The kwargs passed to spec.make.

Return type
VecEnv

Returns
A VecEnv initialized with n_envs environments.

imitation.util.util.oric(x)
Optimal rounding under integer constraints.

Given a vector of real numbers such that the sum is an integer, returns a vector of rounded integers that preserves
the sum and which minimizes the Lp-norm of the difference between the rounded and original vectors for all p
>= 1. Algorithm from https://arxiv.org/abs/1501.00014. Runs in O(n log n) time.

Parameters
x (ndarray) – A 1D vector of real numbers that sum to an integer.

Return type
ndarray

Returns
A 1D vector of rounded integers, preserving the sum.

imitation.util.util.parse_optional_path(path, allow_relative=True, base_directory=None)
Parse an optional path to a pathlib.Path object.

All resulting paths are resolved, absolute paths. If allow_relative is True, then relative paths are allowed as input,
and are resolved relative to the current working directory, or relative to base_directory if it is specified.

Parameters
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• path (Union[str, bytes, PathLike, None]) – The path to parse. Can be a string, bytes, or
os.PathLike.

• allow_relative (bool) – If True, then relative paths are allowed as input, and are resolved
relative to the current working directory. If False, an error is raised if the path is not absolute.

• base_directory (Optional[Path]) – If specified, then relative paths are resolved relative
to this directory, instead of the current working directory.

Return type
Optional[Path]

Returns
A pathlib.Path object, or None if path is None.

imitation.util.util.parse_path(path, allow_relative=True, base_directory=None)
Parse a path to a pathlib.Path object.

All resulting paths are resolved, absolute paths. If allow_relative is True, then relative paths are allowed as input,
and are resolved relative to the current working directory, or relative to base_directory if it is specified.

Parameters

• path (Union[str, bytes, PathLike]) – The path to parse. Can be a string, bytes, or
os.PathLike.

• allow_relative (bool) – If True, then relative paths are allowed as input, and are resolved
relative to the current working directory. If False, an error is raised if the path is not absolute.

• base_directory (Optional[Path]) – If specified, then relative paths are resolved relative
to this directory, instead of the current working directory.

Return type
Path

Returns
A pathlib.Path object.

Raises

• ValueError – If allow_relative is False and the path is not absolute.

• ValueError – If base_directory is specified and allow_relative is False.

imitation.util.util.safe_to_numpy(obj: Union[ndarray, Tensor], warn: bool = False)→ ndarray
imitation.util.util.safe_to_numpy(obj: None, warn: bool = False)→ None

Convert torch tensor to numpy.

If the object is already a numpy array, return it as is. If the object is none, returns none.

Parameters

• obj (Union[ndarray, Tensor, None]) – torch tensor object to convert to numpy array

• warn (bool) – if True, warn if the object is not already a numpy array. Useful for warning
the user of a potential performance hit if a torch tensor is not the expected input type.

Return type
Optional[ndarray]

Returns
Object converted to numpy array
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imitation.util.util.safe_to_tensor(array, **kwargs)
Converts a NumPy array to a PyTorch tensor.

The data is copied in the case where the array is non-writable. Unfortunately if you just use th.as_tensor for this,
an ugly warning is logged and there’s undefined behavior if you try to write to the tensor.

Parameters

• array (Union[ndarray, Tensor]) – The array to convert to a PyTorch tensor.

• kwargs – Additional keyword arguments to pass to th.as_tensor.

Return type
Tensor

Returns
A PyTorch tensor with the same content as array.

imitation.util.util.tensor_iter_norm(tensor_iter, ord=2)
Compute the norm of a big vector that is produced one tensor chunk at a time.

Parameters

• tensor_iter (Iterable[Tensor]) – an iterable that yields tensors.

• ord (Union[int, float]) – order of the p-norm (can be any int or float except 0 and NaN).

Return type
Tensor

Returns
Norm of the concatenated tensors.

Raises
ValueError – ord is 0 (unsupported).

imitation.util.video_wrapper

Wrapper to record rendered video frames from an environment.

Classes

VideoWrapper(env, directory[, single_video]) Creates videos from wrapped environment by calling
render after each timestep.

class imitation.util.video_wrapper.VideoWrapper(env, directory, single_video=True)
Bases: Wrapper

Creates videos from wrapped environment by calling render after each timestep.

__init__(env, directory, single_video=True)
Builds a VideoWrapper.

Parameters

• env (Env) – the wrapped environment.

• directory (Path) – the output directory.
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• single_video (bool) – if True, generates a single video file, with episodes concatenated.
If False, a new video file is created for each episode. Usually a single video file is what is
desired. However, if one is searching for an interesting episode (perhaps by looking at the
metadata), then saving to different files can be useful.

close()

Override close in your subclass to perform any necessary cleanup.

Environments will automatically close() themselves when garbage collected or when the program exits.

Return type
None

directory: Path

episode_id: int

reset()

Resets the environment to an initial state and returns an initial observation.

Note that this function should not reset the environment’s random number generator(s); random variables
in the environment’s state should be sampled independently between multiple calls to reset(). In other
words, each call of reset() should yield an environment suitable for a new episode, independent of previous
episodes.

Returns
the initial observation.

Return type
observation (object)

single_video: bool

step(action)
Run one timestep of the environment’s dynamics. When end of episode is reached, you are responsible for
calling reset() to reset this environment’s state.

Accepts an action and returns a tuple (observation, reward, done, info).

Parameters
action (object) – an action provided by the agent

Returns
agent’s observation of the current environment reward (float) : amount of reward returned
after previous action done (bool): whether the episode has ended, in which case further step()
calls will return undefined results info (dict): contains auxiliary diagnostic information (help-
ful for debugging, and sometimes learning)

Return type
observation (object)

video_recorder: Optional[VideoRecorder]
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3.2 Developer Guide

This guide explains the library structure of imitation. The code is organized such that logically similar files are grouped
into a subpackage. We maintain the following subpackages in src/imitation:

• algorithms: the core implementation of imitation and reward learning algorithms.

• data: modules to collect, store and manipulate transitions and trajectories from RL environments.

• envs: provides test environments.

• policies: provides modules that define policies and methods to manipulate them (e.g., serialization).

• regularization: implements a variety of regularization techniques for NN weights.

• rewards: modules to build, serialize and preprocess neural network based reward functions.

• scripts: command-line scripts for running experiments through Sacred.

• util: provides utility functions like logging, configurations, etc.

3.2.1 Algorithms

The imitation.algorithms.base module defines the following two classes:

• BaseImitationAlgorithm: Base class for all imitation algorithms.

• DemonstrationAlgorithm: Base class for all demonstration-based algorithms like BC, IRL, etc. This class
subclasses BaseImitationAlgorithm.
Demonstration algorithms offer the following methods and properties:

– policy property that returns a policy imitating the demonstration data.

– set_demonstrations method that sets the demonstrations data for learning.

All of the algorithms provide the train method for training an agent and/or a reward network.

All the available algorithms are present in algorithms/ with each algorithm in a distinct file. Adversarial algorithms
like AIRL and GAIL are present in algorithms/adversarial.

3.2.2 Data

Modules handling environment data.

For example: types for transitions/trajectories; methods to compute rollouts; buffers to store transitions; helpers for
these modules.

data.wrapper.BufferingWrapper: Wraps a vectorized environment VecEnv to save the trajectories from all the
environments in a buffer.

data.wrapper.RolloutInfoWrapper: Wraps a gym.Env environment to log the original observations and rewards
received from the environment. The observations and rewards of the entire episode are logged in the info dictionary
with the key "rollout", in the final time step of the episode. This wrapper is useful for saving rollout trajectories,
especially in cases where you want to bypass the reward and/or observation overrides from other wrappers. See data.
rollout.unwrap_traj for details and scripts/train_rl.py for an example use case.

data.rollout.rollout: Generates rollout by taking in any policy as input along with the environment.
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3.2.3 Policies

The imitation.policies subpackage contains the following modules:

• policies.base: defines commonly used policies across the library like FeedForward32Policy,
SAC1024Policy, NormalizeFeaturesExtractor, etc.

• policies.exploration_wrapper: defines the ExplorationWrapper class that wraps a policy to create a
partially randomized policy useful for exploration.

• policies.replay_buffer_wrapper: defines the ReplayBufferRewardWrapper to wrap a replay buffer that
returns transitions with rewards specified by a reward function.

• policies.serialize: defines various functions to save and load serialized policies from the disk or the Hug-
ging Face hub.

3.2.4 Regularization

The imitation.regularization subpackage provides an API for creating neural network regularizers. It provides
classes such as regularizers.LpRegularizer and regularizers.WeightDecayRegularizer to regularize the
loss function and the weights of a network, respectively. The updaters.IntervalParamScaler class also provides
support to scale the lambda hyperparameter of a regularizer up when the ratio of validation to training loss is above an
upper bound, and scales it down when the ratio drops below a lower bound.

3.2.5 Rewards

The imitation.rewards subpackage contains code related to building, serializing, and loading reward networks.
Some of the classes include:

• rewards.reward_nets.RewardNet: is the base reward network class. Reward networks can take state, action,
and the next state as input to predict the reward. The forwardmethod is used while training the network, whereas
the predict method is used during evaluation.

• rewards.reward_nets.BasicRewardNet: builds a MLP reward network.

• rewards.reward_nets.CnnRewardNet: builds a CNN based reward network.

• rewards.reward_nets.RewardEnsemble: builds an ensemble of reward networks.

• rewards.reward_wrapper.RewardVecEnvWrapper: This class wraps a VecEnv with a custom RewardFn.
The default reward function of the environment is overridden with the passed reward function, and the original
rewards are stored in the info_dictwith the original_env_rew key. This class is used to override the original
reward function of an environment with a learned reward function from the reward learning algorithms like
preference comparisons.

The imitation.rewards.serialize module contains functions to load serialized reward functions.

For more see the Reward Networks Tutorial.
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3.2.6 Scripts

We use Sacred to provide a command-line interface to run the experiments. The scripts to run the end-to-end experi-
ments are available in scripts/. You can take a look at the following doc links to understand how to use Sacred:

• Experiment Overview: Explains how to create and run experiments. Each script, defined in scripts/, has a
corresponding experiment object, defined in scripts/config, with the experiment object and Python source
files named after the algorithm(s) supported. For example, the train_rl_ex object is defined in scripts.
config.train_rl and its main function is in scripts.train_rl.

• Ingredients: Explains how to use ingredients to avoid code duplication across experiments. The ingredients used
in our experiments are defined in scripts/ingredients/:

imitation.scripts.ingredients.logging This ingredient provides a number of logging utili-
ties.

imitation.scripts.ingredients.
demonstrations

This ingredient provides (expert) demonstrations to
learn from.

imitation.scripts.ingredients.
environment

This ingredient provides a vectorized gym environ-
ment.

imitation.scripts.ingredients.expert This ingredient provides an expert policy.
imitation.scripts.ingredients.reward This ingredient provides a reward network.
imitation.scripts.ingredients.rl This ingredient provides a reinforcement learning al-

gorithm from stable-baselines3.
imitation.scripts.ingredients.policy This ingredient provides a newly constructed stable-

baselines3 policy.
imitation.scripts.ingredients.wb This ingredient provides Weights & Biases logging.

• Configurations: Explains how to use configurations to parametrize runs. The configurations for different algo-
rithms are defined in their file in scripts/. Some of the commonly used configs and ingredients used across
algorithms are defined in scripts/ingredients/.

• Command-Line Interface: Explains how to run the experiments through the command-line interface. Also, note
the section on how to print configs to verify the configurations used for the run.

• Controlling Randomness: Explains how to control randomness by seeding experiments through Sacred.

3.2.7 Util

imitation.util.logger.HierarchicalLogger: A logger that supports contexts for accumulating the mean of
values of all the logged keys. The logger internally maintains one separate stable_baselines3.common.logger.
Logger object for logging the mean values, and one Logger object for the raw values for each context. The
accumulate_means context cannot be called inside an already open accumulate_means context. The imitation.
util.logger.configure function can be used to easily construct a HierarchicalLogger object.

imitation.util.networks: This module provides some additional neural network layers that can be used for imita-
tion like RunningNorm and EMANorm that normalize their inputs. The module also provides functions like build_mlp
and build_cnn to quickly build neural networks.

imitation.util.util: This module provides miscellaneous util functions like make_vec_env to easily construct
vectorized environments and safe_to_tensor that converts a NumPy array to a PyTorch tensor.

imitation.util.video_wrapper.VideoWrapper: A wrapper to record rendered videos from an environment.
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3.3 Contributing

3.3.1 Code of Conduct

To ensure that the imitation community remains open and inclusive, we have a few ground rules that we ask contributors
to adhere to. This isn’t an exhaustive list of things that you can’t do. Rather, take it in the spirit in which it’s intended
— a guide to make it easier to enrich all of us and the technical communities in which we participate.

• Be friendly and patient.

• Be welcoming. We strive to be a community that welcomes and supports people of all backgrounds and identities.
This includes, but is not limited to members of any race, ethnicity, culture, national origin, colour, immigration
status, social and economic class, educational level, sex, sexual orientation, gender identity and expression, age,
size, family status, political belief, religion, and mental and physical ability.

• Be considerate. Your work will be used by other people, and you in turn will depend on the work of others.
Any decision you take will affect users and colleagues, and you should take those consequences into account
when making decisions. Remember that we’re a world-wide community, so you might not be communicating in
someone else’s primary language.

• Be respectful. Not all of us will agree all the time, but disagreement is no excuse for poor behavior and poor
manners. We might all experience some frustration now and then, but we cannot allow that frustration to turn into
a personal attack. Members of the imitation community should be respectful when dealing with other members
as well as with people outside the imitation community.

• Be careful in the words that you choose. We are a community of professionals, and we conduct ourselves pro-
fessionally. Be kind to others. Do not insult or put down other participants. Harassment and other exclusionary
behavior aren’t acceptable. This includes, but is not limited to:

– Violent threats or language directed against another person.

– Discriminatory jokes and language.

– Posting sexually explicit or violent material.

– Posting (or threatening to post) other people’s personally identifying information without their consent
(“doxing”).

– Personal insults, especially those using racist or sexist terms.

– Unwelcome sexual attention.

– Advocating for, or encouraging, any of the above behavior.

– Repeated harassment of others. In general, if someone asks you to stop, then stop.

• When we disagree, try to understand why. It is important that we resolve disagreements and differing views
constructively. Focus on helping to resolve issues and learning from mistakes.

Adapted from the original text courtesy of the Django project, licensed under a Creative Commons Attribution 3.0
License.
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3.3.2 Ways to contribute

There are four main ways you can contribute to imitation:

• Reporting bugs

• Suggesting new features

• Contributing to the documentation

• Contributing to the codebase

Please note that by contributing to the project, you are agreeing to license your work under imitation’s MIT license, as
per GitHub’s terms of service.

Reporting bugs

This section guides you through submitting a new bug report for imitation. Following the guidelines below helps
maintainers and the community understand your report and reproduce the issue.

You can submit a new bug report by creating an issue on GitHub and labeling it as a bug. Before you do so, please
make sure that:

• You are using the latest stable version of imitation — to check your version, run pip show imitation,

• You have read the relevant section of the documentation that relates to your issue,

• You have checked existing bug reports to make sure that your issue has not already been reported, and

• You have a minimal, reproducible example of the issue.

When submitting a bug report, please include the following information:

• A clear, concise description of the bug,

• A minimal, reproducible example of the bug, with installation instructions, code, and error message,

• Information on your OS name and version, Python version, and other relevant information (e.g. hardware con-
figuration if using the GPU), and

• Whether the problem arose when upgrading to a certain version of imitation, and if so, what version.

Suggesting new features

This section explains how you can submit a new feature request, including completely new features and minor im-
provements to existing functionality. Following these guidelines helps maintainers and the community understand
your request and intended use cases and find related suggestions.

You can submit a new bug report by creating an issue on GitHub and labeling it as an enhancement. Before you do so,
please make sure that:

• You have checked the documentation that relates to your request, as it may be that such feature is already available,

• You have checked existing feature requests to make sure that there is no similar request already under discussion,
and

• You have a minimal use case that describes the relevance of the feature.

When you submit the feature request:

• Use a clear and descriptive title for the GitHub issue to easily identify the suggestion.

• Describe the current behavior, and explain what behavior you expected to see instead and why.
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• If you want to request an API change, provide examples of how the feature would be used.

• If you want to request a new algorithm implementation, please provide a link to the relevant paper or publication.

Contributing to the documentation

One of the simplest ways to start contributing to imitation is through improving the documentation. Currently, our
documentation has some gaps, and we would love to have you help us fill them. You can help by adding missing
sections of the API docs, editing existing content to make it more readable, clear and accessible, or contributing new
content, such as tutorials and FAQs.

If you have struggled to understand something about our codebase and managed to figure it out in the end, please
consider improving the relevant documentation section, or adding a tutorial or a FAQ entry, so that other users can
learn from your experience.

Before submitting a pull request, please create an issue with the documentation label so that we can track the gap. You
can then reference the issue in your pull request by including the issue number.

Contributing to the codebase

You can contribute to the codebase by proposing solutions to issues or feature suggestions you’ve raised yourself, or
selecting an existing issue to work on. Please, make sure to create an issue on GitHub before you start working on a
pull request, as explained in Reporting bugs and Suggesting new features.

Once you’re ready to start working on your pull request, please make sure to follow our coding style guidelines:

• PEP8, with line width 88.

• Use the black autoformatter.

• Follow the Google Python Style Guide unless it conflicts with the above. Examples of Google-style docstrings
can be found here.

Before you submit, please make sure that:

• Your PR includes unit tests for any new features.

• Your PR includes type annotations, except when it would make the code significantly more complex.

• You have run the unit tests and there are no errors. We use pytest for unit testing: run pytest tests/ to run
the test suite.

• You should run pre-commit run to run linting and static type checks. We use pytype for static type analysis.

You may wish to configure this as a Git commit hook:

pre-commit install

These checks are run on CircleCI and are required to pass before merging. Additionally, we track test coverage by
CodeCov and require that code coverage should not decrease. This can be overridden by maintainers in exceptional
cases. Files in imitation/{examples,scripts}/ have no coverage requirements.

Thank you for your interest in imitation!

As an open-source project, we welcome contributions from all users, and are always open to any feedback or sugges-
tions. This section of the documentation is intended to help you understand the process of contributing to the project.

To keep the community open and inclusive, we have developed a Code of Conduct. If you are not familiar with our
Code of Conduct, take a minute to read it before starting your first contribution.
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3.4 Release Notes

3.4.1 v0.4.0

Released on 2023-07-17 - GitHub - PyPI

3.4.2 v0.3.1

Released on 2022-07-29 - GitHub - PyPI

3.4.3 v0.3.0: Major improvements

Released on 2022-07-26 - GitHub - PyPI

3.4.4 v0.2.0: First PyTorch release

Released on 2020-10-23 - GitHub - PyPI

3.4.5 v0.1.1: Final TF1 release

Released on 2020-09-01 - GitHub - PyPI

3.4.6 v0.1.0: Initial release

Released on 2020-05-09 - GitHub - PyPI

3.5 License

This license is also available on the project repository.

MIT License

Copyright (c) 2019-2022 Center for Human-Compatible AI and Google LLC

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
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3.6 Index

• genindex

• modindex
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